Andrea, Loi and Stefano, Matta (2006): Evolution paths on the equilibrium manifold.

PDF
MPRA_paper_4694.pdf Download (132kB)  Preview 
Abstract
In a pure exchange smooth economy with fixed total resources, we de fine the length between two regular equilibria belonging to the equilibrium manifold as the number of intersection points of the evolution path connecting them with the set of critical equilibria. We show that there exists a minimal path according to this definition of length.
Item Type:  MPRA Paper 

Institution:  University of Cagliari 
Original Title:  Evolution paths on the equilibrium manifold 
Language:  English 
Keywords:  Equilibrium manifold; regular economies; critical equilibria; catastrophes; JordanBrouwer separation theorem 
Subjects:  D  Microeconomics > D5  General Equilibrium and Disequilibrium > D51  Exchange and Production Economies D  Microeconomics > D5  General Equilibrium and Disequilibrium > D50  General 
Item ID:  4694 
Depositing User:  Stefano Matta 
Date Deposited:  03 Sep 2007 
Last Modified:  03 Oct 2019 05:00 
References:  [1] Y. Balasko, The graph of the Walras correspondence, Econometrica, 43 (1975), 907912. [2] Y. Balasko, Economic equilibrium and catastrophe theory: an introduction, Econo metrica, 46 (1978), 557569. [3] Y. Balasko, Geometric approach to equilibrium analysis, J. of Mathematical Eco nomics 6 (1979), 217228. [4] Y. Balasko, Foundations of the Theory of General Equilibrium, Academic Press, Boston (1988). [5] Y. Balasko, The set of regular equilibria, J. of Economic Theory 58 (1992), 18. [6] E. Dierker, Regular Economies, Chap.17 in Handbook of Mathematical Economics, vol.I I, edited by K. Arrow and M. Intriligator. Amsterdam: NorthHolland(1982). [7] V. Guillemin and A. Pollack, Differential Topology, Prentice Hall, Englewood Cliffs (1974). [8] E.L. Lima, The JordanBrouwer separation theorem for smooth hypersurfaces, Am. Math. Monthly 95 (1988), 3942. [9] A. Loi, S. Matta, A Riemannian metric on the equilibrium manifold: the smooth case, Economics Bulletin 4 No. 30 (2006), 19. [10] S. Matta, A Riemannian metric on the equilibrium manifold, Economics Bulletin 4 No. 7 (2005), 17. [11] H. Samelson, Orientability of Hypersurfaces in Rn , Proc. Am. Math. Soc. 22 (1969), 301302. 
URI:  https://mpra.ub.unimuenchen.de/id/eprint/4694 