Santín, Daniel and Sicilia, Gabriela (2012): The educational efficiency drivers in Uruguay: Findings from PISA 2009.
Preview |
PDF
MPRA_paper_48420.pdf Download (537kB) | Preview |
Abstract
The aim of this research is to identify the main drivers of secondary school efficiency in Uruguay. We are particularly interested in identifying which variables could be influenced by the design of public policies in order to improve academic outcomes with the current resource allocation. To do this, we build a two-stage semiparametric model using PISA 2009 database. In the first stage, we use data envelopment analysis (DEA) to estimate efficiency scores, which are then regressed on school and student contextual variables. This second stage is carried out using four alternative models: a conventional censured regression (Tobit) and three different regression models based on the use of bootstrapping recently proposed in the literature. The results show an average inefficiency of 7.5% for the evaluated Uruguayan schools, suggesting that there is room for improving academic outcomes by adopting appropriate educational policies. Following on from this, the findings of the second stage demonstrate that increasing educational resources, such as reducing class size, has no significant effects on efficiency. In contrast, educational policies should focus on reviewing grade-retention policies, teaching-learning techniques, assessment systems and, most importantly, encouraging students to spend more time reading after school in order to reduce inefficiencies.
Item Type: | MPRA Paper |
---|---|
Original Title: | The educational efficiency drivers in Uruguay: Findings from PISA 2009. |
Language: | English |
Keywords: | Educational production, efficiency, data envelopment analysis, bootstrap, PISA |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis D - Microeconomics > D6 - Welfare Economics > D61 - Allocative Efficiency ; Cost-Benefit Analysis I - Health, Education, and Welfare > I2 - Education and Research Institutions |
Item ID: | 48420 |
Depositing User: | Gabriela Sicilia |
Date Deposited: | 19 Jul 2013 22:05 |
Last Modified: | 28 Sep 2019 20:12 |
References: | Afonso, A. and St. Aubyn, M. (2005): “Cross-country efficiency of secondary education provision. A semi-parametric analysis with nondiscretionary inputs”. Working Paper Series No. 494. European Central Bank. Barro, R. and Lee, J.W.; (1993), “International Comparisons of Educational Attainment”.Journal of Monetary Economics, 32(3), 363-94 Banker, R. D.; Charnes, A. and Cooper, W. W. (1984): “Models for estimating technical and scale efficiencies in data envelopment analysis”. Management Science, 30 (9), 1078-92. Banker, R. D. and Natarajan, R. (2008) Evaluating contextual variables affecting productivity using data envelopment analysis. Operations Research, 56(1), 48-58. Calero, J. and Escardíbul, J. O. (2007). “Evaluación de servicios educativos: el rendimiento en los centros públicos y privados medido en PISA 2003”. Hacienda Pública Española / Revista de Economía Pública, 183 (4), 33-66. Charnes, A.; Cooper, W. W. and Rhodes, E. (1981): “Evaluating program and managerial efficiency: an application of data envelopment analysis to program follow through”. Management Science, 27, 668-697. Charnes, A.; Cooper, W.W.; Lewin, A.Y. and Seiford, L.M. (1994): “Data Envelopment Analysis: Theory, Methodology and Applications”. Kluwer Academic Publishers, New York. Coleman, J.S.; Campbell, E.Q.; Hobson, C.J.; McPartland, J.; Mood, A.M.; Weinfeld, F.D. and York, R.L. (1966). Equality of Educational Opportunity. Washington, D.C.: U.S. Government Printing Office. Cordero, J. M., Pedraja, F. and Salinas, J. (2005). “Eficiencia en educación secundaria e inputs no controlables: sensibilidad de los resultados ante modelos alternativos”. Hacienda Pública Española, 173 (2), 61-83. Cordero, J.M.; Crespo, E.; Pedraja, F and Santín, D. (2011): “Exploring Educational Efficiency Divergences Across Spanish Regions in PISA 2006”, Revista de Economía Aplicada 57, (vol. XIX), 117-145. Crespo-Cebada, E., Pedraja-Chaparro and Santín, D. (2013). “Does school ownership matter? An unbiased efficiency comparison for regions of Spain”. Journal of Productivity Analysis. DOI 10.1007/s11123-013-0338-y De Jorge, J and Santín, D. (2010): “Los determinantes de la eficiencia educativa en la Unión Europea”. Hacienda Pública Española, 193, 131-156. Duncombe, W. (1997): “Why is it so hard to help central city schools? Journal of Policy Analysis and Management, 16(1), 85-113. Farrel, M.J. (1957): “The measurement of productive efficiency”. Journal of the Royal Statistical Society, 120, 253-266. Fernández, T. (2009): “La desafiliación en la educación media en Uruguay. Una aproximación con base en el panel de estudiantes evaluados por PISA 2003”. Revista Electrónica Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 7 (4), 164-179. Grosskopf, S., Hayes, K.; Taylor, L. y Weber, W. (1997): “Budget-constrained frontier measures of fiscal equality and efficiency in schooling”. Review of Economics and Statistics, 79 (1), 116-124. Hanushek, E.A. (1979): 'Conceptual and empirical issues in the estimation of educational production functions'. Journal of Human Resources, 14 (3), 351-88. Hanushek, E. A. (1986): “The economics of schooling”. Journal of Economic Literature, 24 (3), 1141-1171. Hanushek, E.A. and Kimko, D.D. (2000): “Schooling, labor-force quality, and the growth of nations”, The American Economic Review, 90 (5), 1184-1208. Hanushek, E.A. (2003): “The failure of input based schooling policies”, The Economic Journal, 113, 64-98. Hoff, A. (2007): “Second stage DEA: Comparison of approaches for modeling the DEA score”. European Journal of Operation Research, 181, 425-435. Levin, H. M. (1974): “Measuring efficiency in educational production”. Public Finance Quarterly. 2, 3-24. Llambí, C. and Perera, M. (2008): “La Función de Producción Educativa: el posible sesgo en la estimación de efectos “institucionales” con los datos PISA. El caso de las escuelas de tiempo Completo”. Working paper, Centro de Investigaciones Económicas. Llambí, C.; Perera, M. and Messina, P. (2009): “Desigualdad de oportunidades y el rol del sistema educativo en los logros de los jóvenes uruguayos”. Working paper, Centro de Investigaciones Económicas. Mancebón, Mª.J. and Muñiz, M. (2003): “Aspectos clave de la evaluación de la eficiencia productiva en la educación secundaria”, Papeles de Economía Española, 95, 162-187. McDonald, J. (2009): “Using least squares and tobit in second stage DEA efficiency analyses”. European Journal of Operational Research, 197, 792-798. OECD (2010): “PISA 2009 Results: What Makes a schools successful? Resources, policies and practices”. (Volume IV). OECD (2011): PISA 2009. Technical Report. Perelman, S. and Santín, D. (2011): “Measuring educational efficiency at student level with parametric stochastic distance functions: an application to Spanish PISA results”. Education Economics, 19 (1), 29-49. Ramalho, E. A., Ramalho, J. J. and Henriques, P. D. (2010) Fractional regression models for second stage dea efficiency analyses. Journal of Productivity Analysis, 34(3), 239-255. Simar, L. and Wilson, P.W. (2007): “Estimation and Inference in Two-Stage, Semiparametric Models of Production Processes”, Journal of Econometrics, 136, 31-64. Simar, L. and Wilson, P. W. (2011) Two-stage DEA: Caveat emptor. Journal of Productivity Analysis, 36(2), 205-218. UNESCO (2009): “Desafíos de la educación uruguaya. Aportes para un diagnostico del sistema educativo”. Worthington, A. C. (2001): “An Empirical Survey of Frontier Efficiency Measurement techniques in Education”. Education Economics, 9 (3), 245-268. Xue, M., and Harker, P. T. (1999): “Overcoming the inherent dependency of DEA efficiency scores: a bootstrap approach”. Working Paper, Wharton Financial Institutions Center, University of Pennsylvania. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/48420 |