Lorenzo-Valdes, Arturo and Ruiz-Porras, Antonio (2014): Un modelo TGARCH con una distribución t de Student asimétrica y las hipotesis de racionalidad de los inversionistas bursátiles en Latinoamérica.
Preview |
PDF
MPRA_paper_53019.pdf Download (436kB) | Preview |
Abstract
We propose an ARCH model of the TGARCH type with an asymmetric Student's t distribution. It is built using the methodology of Fernandez and Steel (1998) and the traditional TGARCH model developed by Zakoian (1994). The model is used to describe series of stock market returns and to assess the validity of the rationality hypotheses in Latin America. The results suggest that: 1) The series can be described adequately with the proposed model; (2) the Samuelson´s rationality hypothesis is consistent with the evidence of the markets of Argentina, Brazil, Chile, Colombia and Mexico; 3) the traditional rationality hypothesis is consistent with the evidence of Peru; and (4) the volatility estimated with the proposed model are higher than those estimated with the traditional TGARCH model over the period 2008-2009.
Item Type: | MPRA Paper |
---|---|
Original Title: | Un modelo TGARCH con una distribución t de Student asimétrica y las hipotesis de racionalidad de los inversionistas bursátiles en Latinoamérica |
English Title: | A TGARCH model with an asymmetric Student´s t distribution and the rationality hypotheses of stock investors in Latin America |
Language: | Spanish |
Keywords: | Density Distribution; Asymmetric t-Student; TGARCH; Stock Market Returns; Latin America |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes F - International Economics > F3 - International Finance > F30 - General G - Financial Economics > G1 - General Financial Markets > G10 - General |
Item ID: | 53019 |
Depositing User: | Antonio Ruiz-Porras |
Date Deposited: | 20 Jan 2014 21:12 |
Last Modified: | 28 Sep 2019 19:56 |
References: | Arditti, F.D. H. Levi, (1975), “Portfolio efficiency analysis in three moments: The multiperiod case”, Journal of Finance, 30(3), 797-809 Black, F., (1976), “Studies on stock price volatility changes”, Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economics Statistics Section, 177-181 Bollerslev, T. (2010), “Glossary to ARCH (GARCH)”, en Bollerslev, T., Russell, J.R. y M.W. Watson, (eds.), Volatility and Time Series Econometrics: Essays in Honor of Robert Engle (Oxford University Press, Oxford), 137-163 Bonilla, C.A. y J.P. Sepulveda, (2011), “Stock returns in emerging markets and the use of GARCH models”, Applied Economics Letters, 18(14), 1321–1325 Borch, K., (1969), “A note on uncertainty and indifference curves”, Review of Economic Studies, 36(105), 1-4 Canela, M.A. y E. Pedreira-Collazo, (2007), “Portfolio selection with skewness in emerging market industries”, Emerging Markets Review, 8(3), 230-250 Chunhachinda, P., K. Dandapani, S. Hamid, y A. Prakash, (1997), “Portfolio selection and skewness: Evidence from international stock markets”, Journal of Banking and Finance, 21(2), 143–167 Ding Z., C.W. Granger y R. F. Engle, (1993), “A long memory property of stock market returns and a new model”, Journal of Empirical Finance, 1(1), 83-106 Durán-Vázquez, R., A. Lorenzo-Valdés y A. Ruiz-Porras, (2013), “Un modelo GARCH con asimetría condicional autorregresiva para modelar series de tiempo: Una aplicación para los rendimientos del Índice de Precios y Cotizaciones de la BMV”, en Ortíz-Arango, F., López-Herrera, F. y F. Venegas Martínez, (coords.), Avances Recientes en Valuación de Activos y Administración de Riesgos, Vol. 4. (ESE-IPN, UNAM y Universidad Panamericana, México D.F.), 247-262 Elton, E.J., M.J. Gruber, S.J. Brown y W.N. Goetzmann, (2013), Modern Portfolio Theory and Investment Analysis, Novena edición, Hoboken, Estados Unidos, Wiley Engle R.F., (2004), “Risk and volatility: Econometric models and financial practice”, American Economic Review, 94(3), 405-420 Feldstein, M.S., (1969), “Mean-Variance analysis in the theory of liquidity preference and portfolio selection”, Review of Economic Studies, 36(105), 5-12 Fernández, C. y M.F.J. Steel, (1998), “On Bayesian modeling of fat tails and skewness”, Journal of the American Statistical Association, 93(441), 359–371 Harvey, C. y A. Siddique, (1999), “Autoregressive conditional skewness”, Journal of Financial and Quantitative Analysis, 34(4), 465–487 Harvey, C. y A. Siddique, (2000), “Conditional skewness in asset pricing tests”, Journal of Finance, 55(3), 1263-1295 Jean, W.H., (1971), “The extension of portfolio analysis to three or more parameters”, Journal of Financial and Quantitative Analysis, 6(1), 505–515 Johnson, C. y F. Soriano, (2003), “Volatilidad del mercado accionario y la Crisis Asiática: Evidencia internacional de asimetrías”, El Trimestre Económico, 71(282), 355-388 Lambert, P. y S. Laurent (2001), “Modeling financial time series using GARCH-type models with a skewed student distribution for the innovations”, Lovaina, Universite Catholique de Louvain-Institut de Statistique, Discussion Paper 0125 Lorenzo-Valdés, A. y A. Ruiz-Porras (2012), “Modelación de los rendimientos bursátiles mexicanos mediante los modelos TGARCH y EGARCH: Un estudio econométrico para 30 acciones y el Índice de Precios y Cotizaciones", en Coronado Ramírez S. y L. Gatica Arreola (coords.), Modelos no Lineales en Series Económicas y/o Financieras, (Universidad de Guadalajara, Guadalajara), 46-81 Markowitz, H. (1952), “Portfolio selection”, Journal of Finance, 7(1), 77-91 Mhiri, M. y JL. Prigent, (2010), “International portfolio optimization with higher moments”, International Journal of Economics and Finance, 2(5), 157-169 Nelson, D.B. (1991), “Conditional heteroskedasticity in asset returns: A new approach”, Econometrica, 59(2), 347-370 Prakash, A.J., CH. Chang y T.E. Pactwa, (2003), “Selecting a portfolio with skewness: Recent evidence from US, European and Latin American equity markets”, Journal of Banking and Finance, 27(7), 1375-1390 Samuelson, P.A., (1970), “The fundamental approximation theory of portfolio analysis in terms of means, variances and higher moments”, Review of Economic Studies, 37(4), 537-542 Sharpe, W.F., (1964), “Capital asset prices: A theory of market equilibrium under conditions of risk”, Journal of Finance, 19(3), 425-442 Tobin, J., (1958), “Liquidity preference as behavior towards risk”, Review of Economic Studies, 25(2), 65-86 Tsiang, S.C., (1974), “The rationale of the mean-standard deviation analysis, skewness preference and the demand for money”, American Economic Review, 62(3), 354-371 Xiong, J.X. y T.M. Idzorek, (2011), “The impact of skewness and fat tails on the asset allocation decision”, Financial Analyst Journal, 67(2), 23-35 Zakoian, JM., (1994), “Threshold heteroskedastic models”, Journal of Economic Dynamics and Control, 18(5), 931-955 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/53019 |