Dobrescu, Loretti Isabella and Opris, Dumitru (2007): Neimark-Sacker bifurcation for the discrete-delay Kaldor model. Forthcoming in: Chaos, Solitons and Fractals
Preview |
PDF
MPRA_paper_5415.pdf Download (127kB) | Preview |
Abstract
We consider a discrete-delay time, Kaldor non-linear business cycle model in income and capital. Given an investment function, resembling the one discussed by Rodano, we use the linear approximation analysis to state the local stability property and local bifurcations, in the parameter space. Finally, we will give some numerical examples to justify the theoretical results.
Item Type: | MPRA Paper |
---|---|
Institution: | West University of Timisoara |
Original Title: | Neimark-Sacker bifurcation for the discrete-delay Kaldor model |
Language: | English |
Keywords: | business cycle; Neimark-Sacker bifurcation; discrete-delay time |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C69 - Other C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C62 - Existence and Stability Conditions of Equilibrium |
Item ID: | 5415 |
Depositing User: | Loretti Isabella Dobrescu |
Date Deposited: | 23 Oct 2007 |
Last Modified: | 27 Sep 2019 01:01 |
References: | [1] Bischi G. I., Dieci R., Rodano G., Saltari E., Multiple attractors and global bifurcations in a Kaldor-type business cycle model, Journal of Evolutionary Economics, Springer Verlag 2001 [2] Bischi G. I., Valori V., Nonlinear e¤ects in a discrete-time model of a stock market, Chaos, Solitons & Fractals, vol. 11 (2000) pp. 2103-2121 [3] Dykman G. I., Landa P. S., Neymark Y. I., Synchronizing the chaotic oscilla- tions by external force, Chaos, Solitons & Fractals, Volume 1, Issue 4, 1991, Pages 339-353 [4] Ford N. J., Wulf V., Numerical Hopf bifurcation for the delay logistic equation, M. C. C. M. Technical Report no. 323, Manchester University 1998 [5] Kuznetsov Y. A., Elements of applied bifurcation theory, Applied Mathemat- ical Sciences 112, Springer Verlag, 1995 [6] Neimark Y. I., Landa P. S., Stochastic and chaotic osscilations, Dordrecht Kluwer Academic Publishers, 1992 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/5415 |