Munich Personal RePEc Archive

Distribution Theory of the Least Squares Averaging Estimator

Liu, Chu-An (2013): Distribution Theory of the Least Squares Averaging Estimator.

[img]
Preview
PDF
MPRA_paper_54201.pdf

Download (375kB) | Preview

Abstract

This paper derives the limiting distributions of least squares averaging estimators for linear regression models in a local asymptotic framework. We show that the averaging estimators with fixed weights are asymptotically normal and then develop a plug-in averaging estimator that minimizes the sample analog of the asymptotic mean squared error. We investigate the focused information criterion (Claeskens and Hjort, 2003), the plug-in averaging estimator, the Mallows model averaging estimator (Hansen, 2007), and the jackknife model averaging estimator (Hansen and Racine, 2012). We find that the asymptotic distributions of averaging estimators with data-dependent weights are nonstandard and cannot be approximated by simulation. To address this issue, we propose a simple procedure to construct valid confidence intervals with improved coverage probability. Monte Carlo simulations show that the plug-in averaging estimator generally has smaller expected squared error than other existing model averaging methods, and the coverage probability of proposed confidence intervals achieves the nominal level. As an empirical illustration, the proposed methodology is applied to cross-country growth regressions.

UB_LMU-Logo
MPRA is a RePEc service hosted by
the Munich University Library in Germany.