Rodriguez-Oreggia, Eduardo and Lopez-Videla, Bruno (2014): Imputación de ingresos laborales: Una aplicación con encuestas de empleo en México.
Preview |
PDF
MPRA_paper_54436.pdf Download (552kB) | Preview |
Abstract
The aim of this paper is to make imputation of earnings in observations with missing values in the Encuesta Nacional de Ocupaciones y Empleo (ENOE), and also to analyze a possible bias in human capital estimations from ignoring such missings. We present imputations by two methods, and also a correction for estimations by reweighting observations with reported earnings. The results show differences in human capital estimations on wages and factors related to labor poverty when missing values of earnings are ignored. Differences are acute when measuring labor poverty.
Item Type: | MPRA Paper |
---|---|
Original Title: | Imputación de ingresos laborales: Una aplicación con encuestas de empleo en México |
English Title: | Labor earnings imputation: An application using labor surveys in Mexico |
Language: | Spanish |
Keywords: | imputations, earnings, human capital, poverty, matching |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C81 - Methodology for Collecting, Estimating, and Organizing Microeconomic Data ; Data Access D - Microeconomics > D1 - Household Behavior and Family Economics > D10 - General D - Microeconomics > D6 - Welfare Economics J - Labor and Demographic Economics > J2 - Demand and Supply of Labor > J24 - Human Capital ; Skills ; Occupational Choice ; Labor Productivity |
Item ID: | 54436 |
Depositing User: | Eduardo Rodriguez-Oreggia |
Date Deposited: | 19 Mar 2014 12:45 |
Last Modified: | 27 Sep 2019 16:41 |
References: | Bollinger, C. y Hirsch, B. (2006), “Match Bias from Earnings Imputation in the Current Population Survey: The Case of Imperfect Matching”. Journal of Labor Economics, 24, pp. 483-519. Campos-Vázquez, R. (2013), “Efecto de los Ingresos No Reportados en el Nivel y Tendencia de la Pobreza Laboral en México”, Ensayos, 32, 2, pp. 23-54. CONEVAL (2013), “Tendencias Económicas y Sociales de Corto Plazo. Resultados Nacionales. Mayo 2013” (http://www.coneval.gob.mx/Informes/ITLP/PRIMER%20TRIMESTRE%202013/ITLP%20NACIONAL%20mayo%202013.pdf) 5 de agosto. Crawford, S. (1990), “Internal Memoranda”, Bureau of Labor Statistics, 1989. David, M., Little, R., Samuel, M. y Triest, R. (1986), “Alternative Methods for CPS Income Imputation”, Journal of the American Statistical Association, 77, pp. 251-261. Frick, J.R., y Grabka, M.M. (2003), “Missing Income Data in the German SOEP: Incidence, Imputation, and its Impact on the Income Distribution”, DIW Discussion Paper 376. DIW, Berlín. Groves, R., Singer, E., y Corning, A.D. (1999), “Decision Making in Survey Participation: Theory and a Test”, University of Michigan, mimeo. Hirsch, B. y Schumacher, E. (2004), “Match Bias in Wage Gap Estimates due to Earnings Imputation”, Journal of Labor Economics, 22, pp. 689-722. Horowitz, J., y Manski C. (1998), “Censoring of Outcomes and Regressors Due to Survey Non-Response: Identification and Estimation Using Weights and Imputations”, Journal of Econometrics, 84, pp. 37-58. Horowitz, J., y Manski C. (2000), “Nonparametric Analysis of Randomized Experiments with Missing Covariate and Outcome Data”, Journal of the American Statistical Association, 95, pp. 77-84. Kalton, G. y Kaspryzk, D. (1982), “Imputing for Missing Survey Responses”, Proceedings of the Section on Survey Research Methods, American Statistical Association, pp. 22-31. Lillard, L., Smith, J. y Welch, F. (1986), “What do We Really Know About Wages? The Importance of Nonreporting and Census Imputation”, Journal of Political Economy, 94, pp. 489-506. Little, R. y Rubin, D. (2002), Statistical Analysis with Missing Data (2da ed), Nueva York, John Wiley and Sons. Lopez-Acevedo, G. (2001), “Evolution of Earnings and Rates of Return to Education in Mexico”, Policy Research Working Paper 2691, Washington, World Bank. Mincer, J. (1974), Schooling, Experience and Earnings, Nueva York, National Bureau of Economic Research. Montaquila, J. y Ponikowski, C. (1995), “An Evaluation of Alternative Imputation Methods”, Proceedings of the Section on Survey Research Methods, American Statistical Association. Psacharopoulos, G., Velez, E., Panagides, A., y Yang, H. (1996), “Returns to Education During Economic Boom and Recession: Mexico 1984, 1989 and 1992”, Education Economics, 4, pp. 219-230. Rodríguez-Oreggia, E. (2007), “The Informal Sector in Mexico: Characteristics and Dynamics, Social Perspectives, 9, 1, pp. 89-156. Rodíguez-Oreggia, E. (2014), “Instituciones, Geografía y Retornos a la Educación en México”. En R. de la Torre, E. Rodríguez-Oreggia, e I. Soloaga (eds), Temas de Política Social en México. CIDE, en imprenta. Rodríguez-Oreggia, E. (2010), “Informalidad y Políticas Públicas: El caso de México”, en Adenauer (ed) Informalidad y Políticas Públicas en América Latina, Río de Janeiro, Adenauer-KAS. Rodríguez-Oreggia, E., López-Videla, B. y Prudencio, D. (2012), “Índice de la Tendencia Laboral de la pobreza: Consideraciones Sobre Adiciones al Grupo de Trabajadores con Ingreso Reportado”, EGAP, mimeo. Rodríguez-Oreggia, E., López-Videla, B. y Prudencio, D. (2013) “Labor Vulnerability and the Evolution of the Working Poor in Mexico”, artículo presentado en el congreso de la Society for the Study of Economic Inequality, Bari, Italia. Rubin, D. (1987), “Multiple Imputation for Nonresponse in Surveys”, Nueva York, Wiley. Treiman, D. (2009), Quantitative Data Analysis, San Francisco, Jossey-Bass. West, S.A. Butani, S. y Witt, M. (1990), “Alternative Imputation Methods for Wage Data”, Proceedings of the Section on Survey Research Methods, American Statistical Association, pp. 254-259. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/54436 |