Medovikov, Ivan (2014): Can Analysts Predict Rallies Better Than Crashes?
Preview |
PDF
MPRA_paper_55942.pdf Download (196kB) | Preview |
Abstract
We use the copula approach to study the structure of dependence between sell-side analysts' consensus recommendations and subsequent security returns, with a focus on asymmetric tail dependence. We match monthly vintages of I/B/E/S recommendations for the period January to December 2011 with excess security returns during six months following recommendation issue. Using a symmetrized Joe-Clayton Copula (SJC) model we find evidence to suggest that analysts can identify stocks that will substantially outperform, but not underperform relative to the market, and that their predictive ability is conditional on recommendation changes.
Item Type: | MPRA Paper |
---|---|
Original Title: | Can Analysts Predict Rallies Better Than Crashes? |
Language: | English |
Keywords: | Analyst recommendations, copulas, non-linear dependence |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics G - Financial Economics > G1 - General Financial Markets > G11 - Portfolio Choice ; Investment Decisions G - Financial Economics > G2 - Financial Institutions and Services > G24 - Investment Banking ; Venture Capital ; Brokerage ; Ratings and Ratings Agencies |
Item ID: | 55942 |
Depositing User: | Dr Ivan Medovikov |
Date Deposited: | 16 May 2014 04:09 |
Last Modified: | 28 Sep 2019 16:34 |
References: | Barber, B., Lehavy, R., McNichols, M., & Trueman, B. (2001). Can Investors Profit from the Prophets? Security Analyst Recommendations and Stock Returns. The Journal of Finance, 56(2), 531–563. doi:10.1111/0022-1082.00336 Barber, B. M., Lehavy, R., & Trueman, B. (2010). Ratings Changes, Ratings Levels, and the Predictive Value of Analysts’ Recommendations. Financial Management, 39(2), 533–553. doi:10.1111/j.1755-053X.2010.01083.x Boni, L., & Womack, K. L. (2006). Analysts, Industries, and Price Momentum. Journal of Financial and Quantitative Analysis, 41(01), 85. doi:10.1017/S002210900000243X Chen, X., & Fan, Y. (2006). Estimation of copula-based semiparametric time series models. Journal of Econometrics, 130(2), 307–335. Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. John Wiley & Sons. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 987-1007. Genest, C., Ghoudi, K., & Rivest, L. P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82(3), 543-552. Green, T. C. (2006). The value of client access to analyst recommendations. Journal of Financial and Quantitative Analysis, 41(01), 1-24. Ivković, Z., & Jegadeesh, N. (2004). The timing and value of forecast and recommendation revisions. Journal of Financial Economics, 73(3), 433-463. Jegadeesh, N., Kim, J., Krische, S. D., & Lee, C. (2004). Analyzing the analysts: When do recommendations add value?. The journal of finance, 59(3), 1083-1124. Jegadeesh, N., & Kim, W. (2006). Value of analyst recommendations: International evidence. Journal of Financial Markets, 9(3), 274-309. Joe, H. (1997). Multivariate models and multivariate dependence concepts (Vol. 73). CRC Press. Joe, H., & Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models (Vol. 166). Technical report. Michelis, L., & Ning, C. (2010). The dependence structure between the Canadian stock market and the USD/CAD exchange rate: a copula approach. Canadian Journal of Economics/Revue canadienne d'économique, 43(3), 1016-1039. Nelsen, R. B. (1999). An introduction to copulas. Springer. Ning, C., & Wirjanto, T. S. (2009). Extreme return–volume dependence in East-Asian stock markets: A copula approach. Finance Research Letters, 6(4), 202-209. Patton, A. J. (2006). MODELLING ASYMMETRIC EXCHANGE RATE DEPENDENCE*. International economic review, 47(2), 527-556. Patton, A. J. (2009). Copula–based models for financial time series. In Handbook of financial time series (pp. 767-785). Springer Berlin Heidelberg. Poon, S. H., Rockinger, M., & Tawn, J. (2004). Extreme value dependence in financial markets: Diagnostics, models, and financial implications. Review of financial studies, 17(2), 581-610. Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Université Paris 8. Stickel, S. E. (1995). The anatomy of the performance of buy and sell recommendations. Financial Analysts Journal, 25-39. Womack, K. L. (1996). Do brokerage analysts' recommendations have investment value?. The Journal of Finance, 51(1), 137-167. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/55942 |