Salvo, A and Geiger, F (2014): Reduction in Local Ozone Levels in Urban São Paulo Due to a Shift from Ethanol to Gasoline Use. Published in: Nature Geoscience , Vol. 6, No. 7 (1 June 2014): pp. 450-458.
Preview |
PDF
MPRA_paper_57868.pdf Download (1MB) | Preview |
Abstract
It has been proposed that lower NOx emission fuels such as ethanol can mitigate air pollution from vehicles burning oil-based hydrocarbons. Yet, existing modeling and laboratory studies, even those seeking to simulate the same environment, vary in their predictions of how gasoline/ethanol blends affect atmospheric pollutant concentrations, including ozone. Importantly, ambient concentrations have not been evaluated during an actual – as opposed to hypothetical – shift in fuel mix in a real-world environment. Here, we report the first such study, for the subtropical megacity of São Paulo, Brazil. We combine detailed street-hour level data on regulated pollutant concentrations, meteorology, and traffic with fuel shares from a consumer demand model to compare concentrations across subsamples that differ only in the fuel mix but are otherwise similar in meteorology, anthropogenic activity, and biogenic emissions. As the gasoline share of the bi-fuel light-duty vehicle fleet rose by 62 percentage points, we estimate a robust and statistically significant reduction of about 20% in ozone concentrations, and less precise increases in NO and CO concentrations. We propose that our “model-free” analysis potentially accounts for the interaction between anthropogenic and biogenic emissions and caution that successful strategies against ozone pollution require knowledge of the local chemistry and analysis beyond the presently monitored pollutants, most notably fine particles.
Item Type: | MPRA Paper |
---|---|
Original Title: | Reduction in Local Ozone Levels in Urban São Paulo Due to a Shift from Ethanol to Gasoline Use |
English Title: | Reduction in Local Ozone Levels in Urban São Paulo Due to a Shift from Ethanol to Gasoline Use |
Language: | English |
Keywords: | ozone; gasoline; ethanol; consumer demand; urban air; air quality; atmospheric modeling |
Subjects: | D - Microeconomics > D1 - Household Behavior and Family Economics > D12 - Consumer Economics: Empirical Analysis Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q16 - R&D ; Agricultural Technology ; Biofuels ; Agricultural Extension Services Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q42 - Alternative Energy Sources Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q53 - Air Pollution ; Water Pollution ; Noise ; Hazardous Waste ; Solid Waste ; Recycling R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R4 - Transportation Economics > R41 - Transportation: Demand, Supply, and Congestion ; Travel Time ; Safety and Accidents ; Transportation Noise |
Item ID: | 57868 |
Depositing User: | Prof Alberto Salvo |
Date Deposited: | 12 May 2015 06:10 |
Last Modified: | 27 Sep 2019 22:51 |
References: | 1 Martins, L. & Andrade, M. Ozone Formation Potentials of Volatile Organic Compounds and Ozone Sensitivity to Their Emission in the Megacity of São Paulo, Brazil. Water, Air, & Soil Pollution 195, 201-213, doi:10.1007/s11270-008-9740-x (2008). 2 CETESB. Relatório Anual sobre a Qualidade do Ar no Estado de São Paulo [Annual Report on Air Quality in the State of São Paulo] Portuguese. (Companhia Ambiental do Estado de São Paulo, Sao Paulo, 2010). 3 La Rovere, E. L. Inventário de Emissões de Gases de Efeito Estufa do Município de São Paulo [Greenhouse Gas Emissions Inventory for the Municipality of São Paulo] Portuguese. (Centro de Estudos Integrados sobre Meio Ambiente e Mudanças Climáticas, Universidade Federal do Rio de Janeiro, São Paulo, 2005). 4 Fann, N. et al. Estimating the National Public Health Burden Associated with Exposure to Ambient PM2.5 and Ozone. Risk Analysis 32, 81-95, doi:DOI 10.1111/j.1539-6924.2011.01630.x (2012). 5 Gauderman, W. J. et al. Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study. Lancet 369, 571-577, doi:Doi 10.1016/S0140-6736(07)60037-3 (2007). 6 Ponce, N. A., Hoggatt, K. J., Wilhelm, M. & Ritz, B. Preterm birth: the interaction of traffic-related air pollution with economic hardship in Los Angeles neighborhoods. American Journal of Epidemiology 162, 140-148, doi:10.1093/aje/kwi173 (2005). 7 Currie, J. & Walker, R. Traffic Congestion and Infant Health: Evidence from E-ZPass. American Economic Journal-Applied Economics 3, 65-90, doi:Doi 10.1257/App.3.1.65 (2011). 8 Salvo, A. & Huse, C. Is Arbitrage Tying the Price of Ethanol to that of Gasoline? Evidence from the Uptake of Flexible-Fuel Technology. Energy Journal 32, 119-148 (2010). 9 Goldemberg, J. Ethanol for a sustainable energy future. Science 315, 808-810, doi:DOI 10.1126/science.1137013 (2007). 10 Please see http://www.anp.gov.br/preco/prc/Resumo_Por_Municipio_Index.asp. 11 Please see http://www.anp.gov.br/?dw=11031. 12 Salvo, A. & Huse, C. Build it, but will they come? Evidence from consumer choice between gasoline and sugarcane ethanol. Journal of Environmental Economics and Management, 251-279 (2013). 13 Al-Hasan, M. Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Conversion and Management 44, 1547-1561, doi:10.1016/s0196-8904(02)00166-8 (2003). 14 Graham, L. A., Belisle, S. L. & Baas, C.-L. Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmospheric Environment 42, 4498-4516, doi:10.1016/j.atmosenv.2008.01.061 (2008). 15 He, B.-Q., Jian-Xin, W., Hao, J.-M., Yan, X.-G. & Xiao, J.-H. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels. Atmospheric Environment 37, 949-957, doi:10.1016/s1352-2310(02)00973-1 (2003). 16 Hsieh, W.-D., Chen, R.-H., Wu, T.-L. & Lin, T.-H. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environment 36, 403-410, doi:10.1016/s1352-2310(01)00508-8 (2002). 17 Jia, L.-W., Shen, M.-Q., Wang, J. & Lin, M.-Q. Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. Journal of Hazardous Materials 123, 29-34, doi:10.1016/j.jhazmat.2005.03.046 (2005). 18 Leong, S. T., Muttamara, S. & Laortanakul, P. Applicability of gasoline containing ethanol as Thailand's alternative fuel to curb toxic VOC pollutants from automobile emission. Atmospheric Environment 36, 3495-3503, doi:10.1016/s1352-2310(02)00288-1 (2002). 19 Lynd, L. R. Overview and Evaluation of Fuel Ethanol from Cellulosic Biomass: Technology, Economics, the Environment, and Policy. Annual Review of Energy and the Environment 21, 403-465, doi:doi:10.1146/annurev.energy.21.1.403 (1996). 20 Mulawa, P. A. et al. Effect of Ambient Temperature and E-10 Fuel on Primary Exhaust Particulate Matter Emissions from Light-Duty Vehicles. Environmental Science and Technology 31, 1302-1307, doi:10.1021/es960514r (1997). 21 Poulopoulos, S. G., Samaras, D. P. & Philippopoulos, C. J. Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels. Atmospheric Environment 35, 4399-4406, doi:10.1016/s1352-2310(01)00248-5 (2001). 22 Topgül, T., Yücesu, H. S., Çinar, C. & Koca, A. The effects of ethanol–unleaded gasoline blends and ignition timing on engine performance and exhaust emissions. Renewable Energy 31, 2534-2542, doi:10.1016/j.renene.2006.01.004 (2006). 23 Yoon, S. H., Ha, S. Y., Roh, H. G. & Lee, C. S. Effect of bioethanol as an alternative fuel on the emissions reduction characteristics and combustion stability in a spark ignition engine. Journal of Automobile Engineering 223, 941 (2009). 24 Pereira, P. A. d. P., Santos, L. M. B., Sousa, E. T. & Andrade, J. B. d. Alcohol- and gasohol-fuels: a comparative chamber study of photochemical ozone formation. Journal of the Brazilian Chemical Society 15, 646-651 (2004). 25 Martins, L. D. A., M.F.;. Emission Scenario Assessment of Gasohol Reformulation Proposals and Ethanol Use in the Metropolitan Area of São Paulo. The Open Atmospheric Science Journal 2, 166-175 (2008). 26 Ginnebaugh, D. L., Liang, J. & Jacobson, M. Z. Examining the temperature dependence of ethanol (E85) versus gasoline emissions on air pollution with a largely-explicit chemical mechanism. Atmospheric Environment 44, 1192-1199, doi:10.1016/j.atmosenv.2009.12.024 (2010). 27 Jacobson, M. Z. Effects of Ethanol (E85) versus Gasoline Vehicles on Cancer and Mortality in the United States. Environmental Science and Technology 41, 4150-4157, doi:10.1021/es062085v (2007). 28 Beer, T. et al. The Health Impacts of Ethanol Blend Petrol. Energies 4, 352-367, doi:10.3390/en4020352 (2011). 29 Finlayson-Pitts, B. & Pitts, J. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. (Academic Press, 2000). 30 Seinfeld, J. H. & Pandis, S. N. Atmospheric chemistry and physics : from air pollution to climate change. (Wiley, 1998). 31 Jacob, D. J. Introduction to atmospheric chemistry. (Princeton University Press, 1999). 32 Anderson, L. G. Ethanol fuel use in Brazil: air quality impacts. Energy & Environmental Science 2, 1015-1037, doi:Doi 10.1039/B906057j (2009). 33 Romieu, I., Weitzenfeld, H. & Finkelman, J. Urban Air-Pollution in Latin-America and the Caribbean. Journal of the Air & Waste Management Association 41, 1166-1171 (1991). 34 Please see http://www.gpo.gov/fdsys/pkg/CHRG-106shrg71515/html/CHRG-106shrg71515.htm. 35 Please see http://lugar.senate.gov/energy/hearings/pdf/060622/Carvalho_slides2.pdf. 36 Please see http://cbn.globoradio.globo.com/home/HOME.htm. 37 Please see http://www.inmet.gov.br/. 38 Please see http://cetsp1.cetsp.com.br/monitransmapa/agora/. 39 Orlando, J. P., Alvim, D. S., Yamazaki, A., Corrêa, S. M. & Gatti, L. V. Ozone precursors for the São Paulo Metropolitan Area. Science of the Total Environment 408, 1612-1620 (2010). 40 Cohen, R. C. et al. Quantitative constraints on the atmospheric chemistry of nitrogen oxides: An analysis along chemical coordinates. Journal of Geophysical Research: Atmospheres 105, 24283–24304 (2000). 41 Auffhammer, M. & Kellogg, R. Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality. American Economic Review 101, 2687-2722, doi:DOI 10.1257/aer.101.6.2687 (2011). 42 Hughes, J. E., Knittel, C. R. & Sperling, D. Evidence of a shift in the short-run price elasticity of gasoline demand. Energy Journal 29, 113-134 (2008). 43 Duranton, G. & Turner, M. A. The Fundamental Law of Road Congestion: Evidence from US Cities. American Economic Review 101, 2616-2652, doi:DOI 10.1257/aer.101.6.2616 (2011). 44 Vickrey, W. S. Congestion Theory and Transport Investment. American Economic Review 59, 251-260 (1969). 45 Holland, S. P., Hughes, J. E. & Knittel, C. R. Greenhouse Gas Reductions under Low Carbon Fuel Standards? American Economic Journal-Economic Policy 1, 106-146, doi:Doi 10.1257/Pol.1.1.106 (2009). 46 Bento, A., Kaffine, D., Roth, K. & Zaragoza-Watkins, M. The Effects of Regulation in the Presence of Multiple Unpriced Externalities: Evidence from the Transportation Sector. American Economic Journal-Economic Policy, doi:Doi 10.1257/Pol.1.1.106 (Forthcoming). 47 Goolsbee, A. & Petrin, A. The consumer gains from direct broadcast satellites and the competition with cable TV. Econometrica 72, 351-381, doi:DOI 10.1111/j.1468-0262.2004.00494.x (2004). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/57868 |