Baltagi, Badi H. and Bresson, Georges and Chaturvedi, Anoop and Lacroix, Guy (2014): Robust linear static panel data models using epsilon-contamination.
Preview |
PDF
MPRA_paper_59896.pdf Download (1MB) | Preview |
Abstract
The paper develops a general Bayesian framework for robust linear static panel data models using epsilon-contamination. A two-step approach is employed to derive the conditional type II maximum likelihood (ML-II) posterior distribution of the coefficients and individual effects. The ML-II posterior densities are weighted averages of the Bayes estimator under a base prior and the data-dependent empirical Bayes estimator. Two-stage and three stage hierarchy estimators are developed and their finite sample performance is investigated through a series of Monte Carlo experiments. These include standard random effects as well as Mundlak-type, Chamberlain-type and Hausman-Taylor-type models. The simulation results underscore the relatively good performance of the three-stage hierarchy estimator. Within a single theoretical framework, our Bayesian approach encompasses a variety of specifications while conventional methods require separate estimators for each case. We illustrate the performance of our estimator relative to classic panel estimators using data on earnings and crime.
Item Type: | MPRA Paper |
---|---|
Original Title: | Robust linear static panel data models using epsilon-contamination |
English Title: | Robust linear static panel data models using epsilon-contamination |
Language: | English |
Keywords: | epsilon-contamination, hyper g-priors, type II maximum likelihood posterior density, panel data, robust Bayesian estimator, three-stage hierarchy. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C23 - Panel Data Models ; Spatio-temporal Models C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C26 - Instrumental Variables (IV) Estimation |
Item ID: | 59896 |
Depositing User: | Professor Georges BRESSON |
Date Deposited: | 14 Nov 2014 20:11 |
Last Modified: | 27 Sep 2019 03:30 |
References: | Abramovitz, M. and I.A. Stegun, 1970, Handbook of Mathematical Functions, Dover Publications, Inc. New York. Appell, P., 1882, Sur les fonctions hypergéométriques de deux variables, Journal de Mathématiques Pures et Appliquées, 3ème série, (in French) , 8, 173{216. http://portail.mathdoc.fr/JMPA/PDF/JMPA 1882 3 8 A8 0.pdf. Baltagi, B.H., 2013, Econometric Analysis of Panel Data, fifth edition, Wiley, Chichester, UK. Baltagi, B.H. and G. Bresson, 2012, A robust Hausman-Taylor estimator, in Advances in Econometrics: Essays in Honor of Jerry Hausman, vol. 29, (Baltagi B.H., Carter Hill, R. Newey, W.K. and H.L. White, eds.), Emerald Group Publishing Limited, 175-214. Baltagi, B.H., Bresson, G. and A. Pirotte, 2003, Fixed effects, random effects or Hausman-Taylor? A pretest estimator, Economics Letters, 79, 361-369. Baltagi, B.H., Bresson, G. and A. Pirotte, 2008, To pool or not to pool?, in The Econometrics of Panel Data: Fundamentals and Recent Developments in Theory and Practice, (Matyas, L. and P. Sevestre, eds.), Chap. 16, Advanced Studies in Theoretical and Applied Econometrics, Springer, Amsterdam, 517-546. Baltagi, B.H., Bresson, G. and A. Pirotte, 2009, Testing the fixed effects restrictions? A Monte Carlo study of Chamberlain's minimum chi-square test, Statistics and Probability Letters, 79, 1358-1362. Baltagi, B.H. and S. Khanti-Akom, 1990, On efficient estimation with panel data: an empirical comparison of instrumental variables estimators, Journal of Applied Econometrics, 5, 401-06. Berger, J., 1985, Statistical Decision Theory and Bayesian Analysis, Springer, New York. Berger, J. and M. Berliner, 1984, Bayesian input in Stein estimation and a new minimax empirical Bayes estimator, Journal of Econometrics, 25, 87-108. Berger, J. and M. Berliner, 1986, Robust Bayes and empirical Bayes analysis with epsilon-contaminated priors, Annals of Statistics, 14, 2, 461-486. Bresson, G. and C. Hsiao, 2011, A functional connectivity approach for modeling cross-sectional dependence with an application to the estimation of hedonic housing prices in Paris, Advances in Statistical Analysis, 95, 4, 501-529. Chamberlain, G., 1982, Multivariate regression models for panel data, Journal of Econometrics, 18, 5-46. Chaturvedi, A., 1996, Robust Bayesian analysis of the linear regression, Journal of Statistical Planning and Inference, 50, 175-186. Chib, S., 2008, Panel data modeling and inference: a Bayesian primer, in The Handbook of Panel Data, Fundamentals and Recent Developments in Theory and Practice (Matyas, L. and P. Sevestre, eds), Springer, 479-516. Chib, S. and B.P. Carlin, 1999, On MCMC sampling in hierarchical longitudinal models, Statistics and Computing , 9, 17-26. Cornwell, C. and P. Rupert, 1988, Efficient estimation with panel data: an empirical comparison of instrumental variables estimators, Journal of Applied Econometrics, 3, 149-155. Cornwell, C. and W.N. Trumbull, 1994, Estimating the economic model of crime with panel data, Review of Economic and Statistics, 76, 360-366. Cui, W. and E.I. George, 2008, Empirical Bayes vs. fully Bayes variable selection, Journal of Statistical Planning and Inference, 138, 888-900. Davis, P.J. and P. Rabinowitz, 1984, Methods of Numerical Integration, Academic Press, 2nd ed., New York. Fernandez C. and M.F.J. Steel, 1998, On Bayesian modeling of fat tails and skewness, Journal of The American Statistical Association, 93, 359-371. Fernandez, C., Ley, E. and M.F.J. Steel, 2001, Benchmark priors for Bayesian model averaging, Journal of Econometrics, 100, 381-427. Foster, D. P. and E.I. George, 1994, The risk in ation criterion for multiple regression, The Annals of Statistics, 22, 1947-1975. Good, I.J., 1965, The Estimation of Probabilities, MIT Press, Cambridge, MA. Greenberg, E., 2008, Introduction to Bayesian Econometrics, Cambridge University Press, Cambridge, UK. Hausman, J.A. and W.E. Taylor, 1981, Panel data and unobservable individual effects, Econometrica, 49, 1377-1398. Hsiao, C., 2003, Analysis of Panel Data, second edition, Cambridge University Press, Cambridge, MA. Hsiao, C. and M.H. Pesaran, 2008, Random coefficient models, in The Handbook of Panel Data, Fundamentals and Recent Developments in Theory and Practice (Matyas, L. and P. Sevestre, eds), Springer, 185-214. Kass, R. E. and L. Wasserman, 1995, A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion, Journal of the American Statistical Association, 90, 928-934. Koop, G., 2003, Bayesian Econometrics, Wiley, New York. Liang, F., Paulo, R., Molina, G., Clyde, M.A. and J.O. Berger, 2008, Mixtures of g priors for Bayesian variable selection, Journal of the American Statistical Association, 103, 481, 410-423. Laird, N. M. and Ware, J. H., 1982, Random-effects models for longitudinal data, Biometrics, 38, 963-74. Lindley, D. and A. Smith, 1972, Bayes estimates for the linear model, Journal of the Royal Statistical Society, Series B (Methodological), 34, 1-41. Maddala, G.S., Trost, R.P., Li, H. and F. Joutz, 1997, Estimation of short-run and long-run elasticities of energy demand from panel using shrinkage estimators, Journal of Business and Economic Statistics, 15, 90-100. Maruyama, Y. and E.I. George, 2011, Fully Bayes factors with a generalized g-prior, Annals of Statistics, 39, 2740-2765. Maruyama, Y. and E.I. George, 2014, Posterior odds with a generalized hyper-g prior, Econometric Reviews, 33, 1-4, 251-269. Moreno, E. and L.R. Pericchi, 1993, Bayesian robustness for hierarchical epsilon-contamination models, Journal of Statistical Planning and Inference, 37, 159-167. Mundlak, Y., 1978, On the pooling of time series and cross-section data, Econometrica, 46, 69-85. Press, W.H, Teukolsky, S.A, Vetterling, W.T and B.P Flannery, 2007, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 3rd ed., New York. Rendon, S.R., 2013, Fixed and random effects in classical and Bayesian regression, Oxford Bulletin of Economics and Statistics, 75, 3, 460-476. Singh, A. and A. Chaturvedi, 2012, Robust Bayesian analysis of autoregressive fixed effects panel data model, Department of Statistics, University of Allahabad, working paper. Sinha, P. and P. Jayaraman, 2010a, Robustness of Bayes decisions for normal and lognormal distributions under hierarchical priors, Faculty of Management Studies, University of Delhi, working paper MPRA n° 22416. Sinha, P. and P. Jayaraman, 2010b, Bayes reliability measures of lognormal and inverse Gaussian distri- butions under ML-II epsilon-contaminated class of prior distributions, Defence Science Journal, 60, 4, 442-450. Slater, L.J., 1966, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, UK. Smith A., 1973, A general Bayesian linear model, Journal of the Royal Statistical Society, Series B (Methodological), 35, 67-75. Strawderman, W. E., 1971, Proper Bayes minimax estimators of the multivariate normal mean, The Annals of Mathematical Statistics, 42, 385-388. Zellner, A., 1986, On assessing prior distributions and Bayesian regression analysis with g-prior distribution, in Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti, (Goel, P.K., Zellner, A. and B. de Finetti, eds), Studies in Bayesian Econometrics, vol. 6, North-Holland, Amsterdam, 389-399. Zellner, A., and A. Siow, 1980, Posterior odds ratios for selected regression hypotheses, in Bayesian Statistics: Proceedings of the First International Meeting, (Bernardo, M.H., DeGroot, J.M., Lindley, D.V. and A.F.M. Smith, eds), University of Valencia Press, 585-603. Zheng, Y., Zhu, J. and D. Li, 2008, Analyzing spatial panel data of cigarette demand: a Bayesian hierarchical modeling approach, Journal of Data Science, 6, 467-489. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/59896 |