Ramos, Arturo (2015): Are the log-growth rates of city sizes normally distributed? Empirical evidence for the US.
Preview |
PDF
MPRA_paper_65584.pdf Download (268kB) | Preview |
Abstract
We study the decennial log-growth population rate distributions of the US incorporated places (resp., all places) for the period 1990-2000 (resp. 2000-2010) and the recently constructed US City Clustering Algorithm (CCA) population data in the period 1991-2000. It is obtained an excellent parametric description of these log-growth rates by means of a newly introduced distribution called “double mixture exponential Generalized Beta 2”. The normal distribution is not the one empirically observed for the same datasets.
Item Type: | MPRA Paper |
---|---|
Original Title: | Are the log-growth rates of city sizes normally distributed? Empirical evidence for the US |
Language: | English |
Keywords: | urban log-growth rates distribution, exponential distribution, exponential Generalized Beta 2 distribution, US population log-growth rates |
Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C46 - Specific Distributions ; Specific Statistics R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R11 - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R12 - Size and Spatial Distributions of Regional Economic Activity |
Item ID: | 65584 |
Depositing User: | Arturo Ramos |
Date Deposited: | 14 Jul 2015 13:17 |
Last Modified: | 12 Oct 2019 17:33 |
References: | Barndorff-Nielsen, O. (1977). Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 353(1674):401–419. Barndorff-Nielsen, O. and Halgreen, C. (1977). Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 38:309–311. Barndorff-Nielsen, O. and Stelzer, R. (2005). Absolute moments of generalized hyperbolic distributions and approximate scaling of normal inverse Gaussian L´evy processes. Scandinavian Journal of Statistics, 32:617–637. Bottazzi, G. and Secchi, A. (2011). A new class of asymmetric exponential power densities with applications to economics and finance. Industrial and Corporate Change, 20(4):991–1030. Burnham,K. P. and Anderson,D. R. (2002).Model selection andmultimodel inference: A practical information-theoretic approach. New York: Springer-Verlag. Burnham, K. P. and Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods and Research, 33:261–304. Cirillo, P. (2013). Are your data really Pareto distributed? Physica A, 392:5947–5962. Delli Gatti, D., Di Guilmi, C., Gaffeo, E., Giulioni, G., Gallegati,M., and Palestrini, A. (2005). A new approach to business fluctuations: heterogeneous interacting agents, scaling laws and financial fragility. Journal of Economic Behavior & Organization, 56:489–512. Duranton, G. (2007). Urban evolutions: The fast, the slow, and the still. American Economic Review, 97(1):197–221. Eeckhout, J. (2004). Gibrat’s law for (all) cities. American Economic Review, 94(5):1429–1451. Eeckhout, J. (2009). Gibrat’s law for (all) cities: Reply. American Economic Review, 99:1676–1683. Efron, B. and Hinkley,D. V. (1978). Assessing the accuracy of themaximumlikelihood estimator: Observed versus expected Fisher information. Biometrika, 65(3):457– 482. Giesen, K. and Suedekum, J. (2014). City age and city size. European Economic Review, 71:193–208. Giesen, K., Zimmermann, A., and Suedekum, J. (2010). The size distribution across all cities-double Pareto lognormal strikes. Journal of Urban Economics, 68(2):129– 137. Gonz´alez-Val, R. (2010). The evolution of US city size distribution from a long term perspective (1900–2000). Journal of Regional Science, 50:952–972. Gonz´alez-Val, R., Lanaspa, L., and Sanz-Gracia, F. (2014). New evidence on Gibrat’s Law for cities. Urban Studies, 51(1):93–115. Gonz´alez-Val, R., Ramos, A., and Sanz-Gracia, F. (2013). The accuracy of graphs to describe size distributions. Applied Economics Letters, 20(17):1580–1585. Gonz´alez-Val, R., Ramos, A., Sanz-Gracia, F., and Vera-Cabello, M. (2015). Size distribution for all cities: Which one is best? Papers in Regional Science, 94(1):177–197. Ioannides, Y. M. and Skouras, S. (2013). US city size distribution: Robustly Pareto, but only in the tail. Journal of Urban Economics, 73:18–29. Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995). Continuous univariate distributions. Volume 2. John Wiley & Sons. Kleiber, C. and Kotz, S. (2003). Statistical size distributions in Economics and actuarial sciences. Wiley-Interscience. Lee, S. and Li, Q. (2013). Uneven landscapes and city size distributions. Journal of Urban Economics, 78:19–29. Levy, M. (2009). Gibrat’s law for (all) cities: Comment. American Economic Review, 99:1672–1675. McCullough, B. D. and Vinod, H. D. (2003). Verifying the solution from a nonlinear solver: A case study. American Economic Review, 93(3):873–892. McDonald, J. B. (1984). Generalized functions for the size distribution of income. Econometrica, 52(3):647–665. McDonald, J. B. and Xu, Y. J. (1995). A generalization of the beta distribution with applications. Journal of Econometrics, 66:133–152. Parker, S. C. (1999). The generalised beta as a model for the distribution of earnings. Economics Letters, 62:197–200. Ramos, A. and Sanz-Gracia, F. (2015). US city size distribution revisited: Theory and empirical evidence. Working Paper, available at Munich RePec http://mpra.ub.uni-muenchen.de/64051/. Razali, N. M. and Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2:21–33. Rozenfeld, H. D., Rybski, D., Andrade, J. S., Batty, M., Stanley, H. E., and Makse, H. A. (2008). Laws of population growth. Proceedings of the National Academy of Sciences, 105(48):18702–18707. Rozenfeld, H. D., Rybski, D., Gabaix, X., and Makse, H. A. (2011). The area and population of cities: new insights from a different perspective on cities. American Economic Review, 101:2205–2225. Schluter, C. and Trede, M. (2013). Gibrat, Zipf, Fisher and Tippet: City size and growth distributions reconsidered. Working Paper 27/2013 Center for Quantitative Economics ¨Münster. Stanley,M. H. R., Amaral, L. A. N., Buldyrev, S. V., Havlin, S., Leschhorn, H., Maass, P., Salinger, M. A., and Stanley, H. E. (1996). Scaling behaviour in the growth of companies. Nature, 379:804–806. Sutton, J. (1997). Gibrat’s legacy. Journal of Economic Literature, 35:40–59. Uchaikin, V. V. and Zolotarev, V. M. (1999). Chance and stability. Stable distributions and their applications. VSP. Zolotarev, V. M. (1986). One-dimensional stable distributions. American Mathematical Society. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/65584 |