Munich Personal RePEc Archive

Forecasting stock market returns over multiple time horizons

Kroujiline, Dimitri and Gusev, Maxim and Ushanov, Dmitry and Sharov, Sergey V. and Govorkov, Boris (2015): Forecasting stock market returns over multiple time horizons.

This is the latest version of this item.

[img]
Preview
PDF
MPRA_paper_70358.pdf

Download (2MB) | Preview

Abstract

In this paper we seek to demonstrate the predictability of stock market returns and explain the nature of this return predictability. To this end, we introduce investors with different investment horizons into the news‐driven, analytic, agent‐based market model developed in Gusev et al. (2015). This heterogeneous framework enables us to capture dynamics at multiple timescales, expanding the model’s applications and improving precision. We study the heterogeneous model theoretically and empirically to highlight essential mechanisms underlying certain market behaviors, such as transitions between bull‐ and bear markets and the self‐similar behavior of price changes. Most importantly, we apply this model to show that the stock market is nearly efficient on intraday timescales, adjusting quickly to incoming news, but becomes inefficient on longer timescales, where news may have a long‐lasting nonlinear impact on dynamics, attributable to a feedback mechanism acting over these horizons. Then, using the model, we design algorithmic strategies that utilize news flow, quantified and measured, as the only input to trade on market return forecasts over multiple horizons, from days to months. The backtested results suggest that the return is predictable to the extent that successful trading strategies can be constructed to harness this predictability.

Available Versions of this Item

UB_LMU-Logo
MPRA is a RePEc service hosted by
the Munich University Library in Germany.