Dominique, CRene (2016): Ordinal Space, Utility, and Consumer Demand: A Clarifying Note.

PDF
MPRA_paper_75030.pdf Download (756kB)  Preview 
Abstract
Concepts such as marginal utility, expectedutility, etc. are severely criticized in some quarters where economists are accused of performing mathematical operations in ordinal spaces. Haplessly, economists’ counterclaims are far from being substantive. This note shows that there exists an orderisomorphism relating preference ordering to a substantive set of real numbers and thus obviates the need for a utility index.
Item Type:  MPRA Paper 

Original Title:  Ordinal Space, Utility, and Consumer Demand: A Clarifying Note 
English Title:  Ordinal Space, Utility, and Consumer Demand: A Clarifying Note 
Language:  English 
Keywords:  Ordinal Spaces, Binary Relation, Poset, Total Preordering, Isomorphisms. 
Subjects:  D  Microeconomics > D4  Market Structure, Pricing, and Design D  Microeconomics > D5  General Equilibrium and Disequilibrium 
Item ID:  75030 
Depositing User:  CRene Dominique 
Date Deposited:  12 Nov 2016 07:06 
Last Modified:  05 Oct 2019 23:59 
References:  Barzilai, J. (2010), “Preference Function Modelling: The Mathematical Foundation of Decision Theory.” In Ehrgott, M., Figueira, J. R. and Greco, S, (eds.) Trends in Multiple Criteria Analysis, Springer, 5786: Boston. Barzilai, J. (2011), “On Ordinal, Cardinal, and Expected Utility.” Technical Report, Dept. of Industrial Engineering, Dalhousie University, Halifax, N. S. Canada, 47. Barzilai, J, “Inapplicable Operations on Ordinal, Cardinal, and Expected Utility.” RealWorld Economics Review, 63, 98102. Campion, M. J. et al. (2012), “Topologies Generated by Nested Collections.” Http://math.usm.ny/bulletin/pdf/accepted papers/201212027.Rl/pdf. Retrieved on July 19, 2016, 117. Debreu, G. (1954), “Representation of a Preference Ordering by a Numerical Function.” In Thrall, R. M., Coombs, C. H. and Davis, R. L. (eds.) Decision Process, Wiley, 159165: New York. Debreu, G. (1970). “Economies with a Finite Set of Equilibria.” Econometrica, 38 (3), 387392. Dominique, CR. (2008), “Walrasian Solutions Without Utility Functions.” Economics and Econometrics Research Institute, EERI Research Papers, Brussels, October. Hicks, J. (1946). Value and Capital, (2nd ed,), Oxford University Press.: Oxford. Ingrao, B. and Israel, G. (1990). The Invisible Hand. MIT Press, 154161: Cambridge. Jaffé, W. (1965). Correspondence of Léon Walras and Related Papers, vol. 3, North Holland: Amsterdam, 208210. Katzner, D. W. (2014). “Ordinal Utility and the Traditional Theory of Consumer Demand.” RealWorld Economics Review, 67, 17. Karolyi, K. (2016). Introduction to Set Theory. Dept. of Applied Analysis, Eotvos Lorand University, H1088 Budapest, Muzeum Krt. 68. Retrieved from www: cs. Elte.huKarolyik. Intro.pdf on Sep. 1, 2016. Layard, P. R. G. and Walters A. A. (1978). Microeconomic Theory, McGrawHill Book Co.: New York. McKensie, L. (1957), Demand Theory Without a Utility Index.” Review of Economic Studies, 24,185189. Pareto, W. (1971). Manual of Political Economy. A. M. Kelly: London. Pequignot, Y. (2015). “Betterquasiorder: Ideals and Spaces.” Ph.D Dissertation, University of Paris DiderotParis 7 and University of Lausanne, p. 16. Rosen, K. H. (1999). Discrete Mathematics and its Applications, (4th ed.), McGrawHill: New York. Samuelson, P. A. (1948). Foundations of Economic Analysis, Cambridge University Press: Cambridge. Satanat, D. and McAllister, D. F. (1977). Discrete Mathematics in Computer Science. PrenticeHall: New York. Sonnenschein, H. (1972), “Market Excess Demand Functions.” Econometrica, 40 (3), 549563. Takayama, A. (1986). Mathematical Economics, Cambridge University Press: Cambridge. Varian, H. R. (1978), Microeconomic Analysis, W. W. Norton & co.: New York. von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic Behavior, Princeton University Press: Princeton. Warner, S. (1965). Modern Algebra, Dover Pub., Inc.: New York. 
URI:  https://mpra.ub.unimuenchen.de/id/eprint/75030 