Mynbaev, Kairat and Nadarajah, Saralees and Withers, Christopher and Aipenova, Aziza (2014): Improving bias in kernel density estimation. Published in: Statistics and Probability Letters , Vol. 94, (2014): pp. 106-112.
Preview |
PDF
MPRA_paper_75846.pdf Download (406kB) | Preview |
Abstract
For order $q$ kernel density estimators we show that the constant $b_q$ in $bias=b_qh^q+o(h^q)$ can be made arbitrarily small, while keeping the variance bounded. A data-based selection of bq is presented and Monte Carlo simulations illustrate the advantages of the method.
Item Type: | MPRA Paper |
---|---|
Original Title: | Improving bias in kernel density estimation |
Language: | English |
Keywords: | Density estimation, bias, higher order kernel |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General |
Item ID: | 75846 |
Depositing User: | Kairat Mynbaev |
Date Deposited: | 29 Dec 2016 11:33 |
Last Modified: | 03 Oct 2019 11:56 |
References: | Berlinet, A., 1993. Hierarchies of higher order kernels. Probab. Theory Related Fields 94, 489–504. Berlinet, A., Thomas-Agnan, Ch., 2004. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers, Boston, MA. Deheuvels, P., 1977. Estimation non parametrique de la densite par histogrammes generalises. Rev. Stat. Appl. 25, 5–42. Devroye, L., 1987. A Course in Density Estimation. In: Progress in Probability and Statistics, vol. 14. Birkhäuser Boston Inc., Boston, MA. Fan, J., Hu, T.Ch., 1992. Bias correction and higher order kernel functions. Statist. Probab. Lett. 13, 235–243. Gasser, Th., Muller, H.G., 1979. Kernel estimation of regression functions. In: Gasser, Th., Rosenblatt, M. (Eds.), Smoothing Techniques for Curve Estimation. Springer, Berlin, pp. 23–68. Lejeune, M., Sarda, P., 1992. Smooth estimators of distribution and density functions. Comput. Statist. Data Anal. 14, 457–471. Marron, J.S., Wand, M.P., 1992. Exact mean integrated squared error. Ann. Statist. 20, 712–736. Mynbaev, K.T., Martins Filho, C., 2010. Bias reduction in kernel density estimation via Lipschitz conditions. J. Nonparametr. Stat. 22, 219–235. Scott, D.W., 1992. Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley & Sons. Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London. Wand, M.P., Jones, M.C., 1995. Kernel Smoothing. In: Monographs on Statistics and Applied Probability, vol. 60. Chapman and Hall, London. Wand, M.P., Schucany, W.R., 1990. Gaussian-based kernels. Canad. J. Statist. 18, 197–204. Withers, C.S., Nadarajah, S., 2013. Density estimates of low bias. Metrika 76, 357–379. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/75846 |