Mynbaev, Kairat and Martins-Filho, Carlos (2016): Reducing bias in nonparametric density estimation via bandwidth dependent kernels: L1 view. Forthcoming in: Statistics and Probability Letters , Vol. 123, (2017): pp. 17-22.
Preview |
PDF
MPRA_paper_75902.pdf Download (249kB) | Preview |
Abstract
We define a new bandwidth-dependent kernel density estimator that improves existing convergence rates for the bias, and preserves that of the variation, when the error is measured in L1. No additional assumptions are imposed to the extant literature.
Item Type: | MPRA Paper |
---|---|
Original Title: | Reducing bias in nonparametric density estimation via bandwidth dependent kernels: L1 view |
Language: | English |
Keywords: | Kernel density estimation, higher order kernels, bias reduction |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General |
Item ID: | 75902 |
Depositing User: | Kairat Mynbaev |
Date Deposited: | 30 Dec 2016 07:16 |
Last Modified: | 15 Oct 2019 04:47 |
References: | Devroye, L., 1987. A Course in Density Estimation. Birkhäuser, Boston, MA. Devroye, L., Györfi, L., 1985. Nonparametric Density Estimation: The L1 View. John Wiley and Sons, New York, NY. Mynbaev, K., Nadarajah, S., Withers, C., Aipenova, A., 2014. Improving bias in kernel density estimation. Statist. Probab. Lett. 94, 106–112. Parzen, E., 1962. On estimation of a probability density and mode. Ann. Math. Stat. 33, 1065–1076. Rosenblatt, M., 1956. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837. Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall, London. Tsybakov, A.B., 2009. Introduction to Nonparametric Estimation. Springer-Verlag, New York, NY. Zhuk, V.V., Natanson, G.I., 2003. Seminorms and continuity modules of functions defined on a segment. J. Math. Sci. 118, 4822–4851. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/75902 |