McCarthy, David and Mikkola, Kalle and Thomas, Teruji (2017): Representation of strongly independent preorders by sets of scalar-valued functions.
Preview |
PDF
MPRA_paper_79284.pdf Download (360kB) | Preview |
Abstract
We provide conditions under which an incomplete strongly independent preorder on a convex set X can be represented by a set of mixture preserving real-valued functions. We allow X to be infinite dimensional. The main continuity condition we focus on is mixture continuity. This is sufficient for such a representation provided X has countable dimension or satisfies a condition that we call Polarization.
Item Type: | MPRA Paper |
---|---|
Original Title: | Representation of strongly independent preorders by sets of scalar-valued functions |
Language: | English |
Keywords: | Expected utility Multi-representation Incompleteness Mixture continuity |
Subjects: | D - Microeconomics > D1 - Household Behavior and Family Economics > D11 - Consumer Economics: Theory D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D81 - Criteria for Decision-Making under Risk and Uncertainty |
Item ID: | 79284 |
Depositing User: | Dr David McCarthy |
Date Deposited: | 22 May 2017 08:04 |
Last Modified: | 26 Sep 2019 23:50 |
References: | Aliprantis, C. and Border, K., 2006. Infinite Dimensional Analysis, third edition. Springer. Apesteguia, J. and Ballester, M., 2009. `A theory of reference-dependent behavior.' Economic Theory 40: 427-455. Anscombe, F., Aumann, R., 1963. `A definition of subjective probability.' The Annals of Mathematical Statistics 34: 199-205. Aumann, R., 1962. `Utility theory without the completeness axiom.' Econometrica 30, 455-462. Baucells, M. and Shapley, L. 2008. `Multiperson utility.' Games and Economic Behavior 62: 329-347. Danan, E., Guerdjikova, A. and Zimper, A., 2012. `Indecisiveness aversion and preference for commitment.' Theory and Decision 72: 1-13. Dubra, J., 2011. `Continuity and completeness under risk.' Mathematical Social Sciences 61, 80-81. Dubra, J., Maccheroni, F., and Ok, E., 2004. `Expected utility theory without the completeness axiom.' Journal of Economic Theory 115: 118-133. Eliaz, K. and Ok, E., 2006. `Indifference or indecisiveness? Choice-theoretic foundations of incomplete preferences.' Games and Economic Behavior 56: 61-86. Evren, Ö., 2008. `On the existence of expected multi-utility representations.' Economic Theory 35: 575-592. Evren, Ö., 2014. `Scalarization methods and expected multi-utility representations.' Journal of Economic Theory 151: 30-63. Galaabaatar, T. and Karni, E., 2012. `Expected multi-utility representations.' Mathematical Social Sciences 64: 242-246. Galaabaatar, T. and Karni, E., 2013. `Subjective expected utility with incomplete preferences.' Econometrica 81: 255-284. Gler, O., 2010. Foundations of Optimization. Graduate Texts in Mathematics 258. Springer. Halpern, J., 2003. Reasoning about Uncertainty, MIT Press. Hausner, M., Wendel, J., `Ordered vector spaces.' Proceedings of the American Mathematical Society 3, 977-982. Heller, Y., 2012. `Justifiable choice.' Games and Economic Behavior 76: 375- 390. Herstein, I. and Milnor, J., 1953. `An axiomatic approach to measurable utility.' Econometrica 21: 291-297. Holmes, R. B., 1975. Geometric Functional Analysis and its Applications. Graduate Texts in Mathematics 24. Springer. Jacobson, N., 2013. Lectures in Abstract Algebra: II. Linear Algebra. Graduate Texts in Mathematics vol. 31. Springer. Kannai, Y., 1963. `Existence of a utility in infinite dimensional partially ordered spaces.' Israel Journal of Mathematics 1: 229-234. Karni, E., 2011. `Continuity, completeness and the definition of weak preferences.' Mathematical Social Sciences 62: 123-125. Köthe, G., 1983. Topological Vector Spaces I, translated by D. J. H. Garling. Springer. Mandler, M., 2005. `Incomplete preferences and rational intransitivity of choice.' Games and Economic Behavior 50: 255-277. Masatlioglu, Y. and Ok, E., 2005. `Rational choice with status quo bias.' Journal of Economic Theory 121: 1-29. Manzini, P. and Mariotti, M., 2008. `On the representation of incomplete preferences over risky alternatives.' Theory and Decision 65: 303-323. McCarthy, D., Mikkola, K., Thomas, T., 2016. `Utilitarianism with and without expected utility'. MPRA Paper No. 72578 https://mpra.ub.unimuenchen. de/72931/ McCarthy, D., Mikkola, K., Thomas, T., 2017a. `Representation of strongly independent preorders by vector-valued utility functions.' Mimeo. McCarthy, D., Mikkola, K., Thomas, T., 2017b. `Representation of strongly independent strict partial orders.' Mimeo. McCarthy, D., Mikkola, K., Thomas, T., 2017c. `Continuity and completeness of strongly independent preorders.' Mimeo. Nau, R., 2006. `The shape of incomplete preferences' Annals of Statistics 34: 2430--2448. Nehring, K., 1997. `Rational choice and revealed preference without binariness.' Social Choice and Welfare 14: 403-425. von Neumann, J. and Morgenstern, O., 1953. Theory of Games and Economic Behavior, third edition, Princeton, Princeton University Press. Ok, E., 2007. Real Analysis with Economic Applications. Princeton, Princeton University Press. Ok, E., Ortoleva P. and Riella, G., 2012. `Incomplete preferences under uncertainty: indecisiveness in beliefs vs. tastes.' Econometrica 80: 1791-1808. Rudin, W., 1974. Functional Analysis. TATA McGraw-Hill. Schmeidler, D., 1971. `A condition for the completeness of partial preference relations.' Econometrica 39: 403-404. Shapley, L. and Baucells, M., 1998. `Multiperson utility.' UCLA Working Paper 779. Vind, K., 2000. `von Neumann Morgenstern preferences.' Journal of Mathematical Economics 33: 109-122. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/79284 |