Bravo, Francesco and Chu, Ba and Jacho-Chavez, David (2013): Semiparametric estimation of moment condition models with weakly dependent data. Published in: Journal of Nonparametric Statistics , Vol. 29, No. 1 (2017): pp. 108-136.
Preview |
PDF
MPRA_paper_79686.pdf Download (642kB) | Preview |
Abstract
This paper develops the asymptotic theory for the estimation of smooth semiparametric generalized estimating equations models with weakly dependent data. The paper proposes new estimation methods based on smoothed two-step versions of the generalised method of moments and generalised empirical likelihood methods. An important aspect of the paper is that it allows the first-step estimation to have an effect on the asymptotic variances of the second-step estimators and explicitly characterises this effect for the empirically relevant case of the so-called generated regressors. The results of the paper are illustrated with a partially linear model that has not been previously considered in the literature. The proofs of the results utilise a new uniform strong law of large numbers and a new central limit theorem for U-statistics with varying kernels that are of independent interest.
Item Type: | MPRA Paper |
---|---|
Original Title: | Semiparametric estimation of moment condition models with weakly dependent data |
English Title: | Semiparametric estimation of moment condition models with weakly dependent data |
Language: | English |
Keywords: | Alpha-mixing, empirical processes, empirical likelihood, stochastic equicontinuity, uniform law of large numbers |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General |
Item ID: | 79686 |
Depositing User: | Dr. Ba Chu |
Date Deposited: | 16 Jun 2017 13:25 |
Last Modified: | 30 Sep 2019 14:53 |
References: | Adams, T.M., and Nobel, A.B. (2010), ‘Uniform Convergence of Vapnik-Čhervonenkis Classes under Ergodic Sampling’, Annals of Probability, 38, 1345–1367. doi: 10.1214/09-AOP511[CrossRef], [Web of Science ®], [Google Scholar] Andrews, D.W.K. (1987), ‘Consistency in Nonlinear Econometric Models: A Generic Uniform Law of Large Numbers’, Econometrica, 55, 1465–1471. doi: 10.2307/1913568[CrossRef], [Web of Science ®], [Google Scholar] Andrews, D.W.K. (1991), ‘Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation’, Econometrica, 59, 817–858. doi: 10.2307/2938229[CrossRef], [Web of Science ®], [Google Scholar] Andrews, D.W.K. (1994), ‘Asymptotics for Semiparametric Econometric Models Via Stochastic Equicontinuity’, Econometrica, 62, 43–72. doi: 10.2307/2951475[CrossRef], [Web of Science ®], [Google Scholar] Andrews, D.W.K. (1994), ‘Empirical Process Methods in Econometrics’, in Handbook of Econometrics, Vol. IV, eds. R. Engle and D. McFadden, New York: North Holland, pp. 2247–2294. Andrews, D.W.K. (1995), ‘Nonparametric Kernel Estimation for Semiparametric Models’, Econometric Theory, 11, 560–596. doi: 10.1017/S0266466600009427[CrossRef], [Web of Science ®], [Google Scholar] Boente, G., and Fraiman, R. (1988), ‘Consistency of a Nonparametric Estimate of a Density Function for Dependent Variables’, Journal of Multivariate Analysis, 25, 90–99. doi: 10.1016/0047-259X(88)90154-6[CrossRef], [Web of Science ®], [Google Scholar] Bonhomme, S., and Manresa, E. (2015), ‘Grouped Patterns of Heterogeneity in Panel Data’, Econometrica, 83, 1147–1184. doi: 10.3982/ECTA11319[CrossRef], [Web of Science ®], [Google Scholar] Bravo, F., Chu, B.M., and Jacho-Chávez, D.T. (2016), ‘Generalized Empirical Likelihood M Testing for Semiparametric Models with Time Series Data’, Unpublished manuscript. Chamberlain, G. (1987), ‘Asymptotic Efficiency in Estimation with Conditional Moment Restrictions’, Journal of Econometrics, 34, 305–344. doi: 10.1016/0304-4076(87)90015-7[CrossRef], [Web of Science ®], [Google Scholar] Chaussé, P. (2010), ‘Computing Generalized Method of Moments and Generalized Empirical Likelihood with R’, Journal of Statistical Software, 34, 1–35. doi: 10.18637/jss.v034.i11[CrossRef], [Web of Science ®], [Google Scholar] Chen, X., Jacho-Chávez, D.T., and Linton, O. (2016), ‘Averaging of an Increasing Number of Moment Condition Estimators’, Econometric Theory, 32, 30–70. doi: 10.1017/S0266466614000851[CrossRef], [Web of Science ®], [Google Scholar] Chen, X., Linton, O., and van Keilegom, I. (2003), ‘Estimation of Semiparametric Models When the Criterion Function is Not Smooth’, Econometrica, 71, 1591–1608. doi: 10.1111/1468-0262.00461[CrossRef], [Web of Science ®], [Google Scholar] Chen, X., and Shen, X. (1998), ‘Sieve Extremum Estimates for Weakly Dependent Data’, Econometrica, 66, 289–314. doi: 10.2307/2998559[CrossRef], [Web of Science ®], [Google Scholar] Chu, B.M., Huynh, K.P., and Jacho-Chávez, D.T. (2013), ‘Functionals of Order Statistics and their Multivariate Concomitants with Application to Semiparametric Estimation by Nearest Neighbors’, Sankhya: Series B, 75, 238–292. doi: 10.1007/s13571-013-0057-4[CrossRef], [Google Scholar] Chu, B.M., and Jacho-Chávez, D.T. (2012), ‘k-Nearest Neighbour Estimation of Inverse-Density-Weighted Expectations with Dependent Data’, Econometric Theory, 28, 769–803. doi: 10.1017/S026646661100079X[CrossRef], [Web of Science ®], [Google Scholar] Doukhan, P. (1994), Mixing: Properties and Examples, Lecture Notes in Statistics, Vol. 85, New York: Springer.[CrossRef], [Google Scholar] Doukhan, P., Massart, P., and Rio, E. (1994), ‘The Functional Central Limit Theorem for Strongly Mixing Processes’, Annales de L'Institut Henri Poincaré (B) – Probabilités et Statistiques, 30, 63–82.[Web of Science ®], [Google Scholar] Dvoretsky, A. (1972), ‘Asymptotic Normality for Sums of Dependent Random Variables’, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, eds. L.M.L. Cam, J. Neyman, and E.L. Scott, Berkeley: University of California, pp. 513–535. Escanciano, J.C., Jacho-Chávez, D.T., and Lewbel, A. (2014), ‘Uniform Convergence of Weighted Sums of Non- and Semi-parametric Residuals for Estimation and Testing’, Journal of Econometrics, 178, 426–443. doi: 10.1016/j.jeconom.2013.06.004[CrossRef], [Web of Science ®], [Google Scholar] Escanciano, J.C., Jacho-Chávez, D.T., and Lewbel, A. (2016), ‘Identification and Estimation of Semiparametric Two Step Models’, Quantitative Economics, 7, 561–589. doi: 10.3982/QE328[CrossRef], [Web of Science ®], [Google Scholar] Fan, Y., and Li, Q. (1999), ‘Central Limit Theorem for Degenerate U-Statistics of Absolutely Regular Processes with Applications to Model Specification Testing’, Journal of Nonparametric Statistics, 10, 245–271. doi: 10.1080/10485259908832762[Taylor & Francis Online], [Web of Science ®], [Google Scholar] Gao, J. (2007), Nonlinear Time Series: Semiparametric and Nonparametric Methods, Boca Raton: Chapman and Hall/CRC.[CrossRef], [Google Scholar] Gao, J., and Liang, H. (1997), ‘Statistical Inference in Single-Index and Partially Nonlinear Models’, Annals of the Institute of Statistical Mathematics, 49, 493–517. doi: 10.1023/A:1003118812392[CrossRef], [Web of Science ®], [Google Scholar] Hansen, L.P. (1982), ‘Large Sample Properties of Generalized Method of Moments Estimators’, Econometrica, 50, 1029–1054. doi: 10.2307/1912775[CrossRef], [Web of Science ®], [Google Scholar] Hayfield, T., and Racine, J.S. (2008), ‘Nonparametric Econometrics: The np Package’, Journal of Statistical Software, 27, 1–32. doi: 10.18637/jss.v027.i05[CrossRef], [Web of Science ®], [Google Scholar] de Jong, P. (1987), ‘A Central Limit Theorem for Generalized Quadratic Forms’, Probability Theory and Related Fields, 75, 261–277. doi: 10.1007/BF00354037[CrossRef], [Web of Science ®], [Google Scholar] Kitamura, Y. (1997), ‘Empirical Likelihood Methods with Weakly Dependent Processes’, Annals of Statistics, 25, 2084–2102. doi: 10.1214/aos/1069362388[CrossRef], [Web of Science ®], [Google Scholar] Kitamura, Y., and Stutzer, M. (1997), ‘An Information Theoretic Alternative to Generalized Method of Moments Estimation’, Econometrica, 65, 861–874. doi: 10.2307/2171942[CrossRef], [Web of Science ®], [Google Scholar] Kong, E., Linton, O.B., and Xia, Y. (2010), ‘Uniform Bahadur Representation for Local Polynomial Estimates of M-Regression and its Application to the Additive Model’, Econometric Theory, 26, 1529–1564. doi: 10.1017/S0266466609990661[CrossRef], [Web of Science ®], [Google Scholar] Lee, L. (1994), ‘Semiparametric Instrumental Variable Estimation of Simultaneous Equation Sample Selection Models’, Journal of Econometrics, 63, 341–388. doi: 10.1016/0304-4076(93)01571-3[CrossRef], [Web of Science ®], [Google Scholar] Li, Q., and Racine, J.S. (2007), Nonparametric Econometrics: Theory and Practice, Princeton: Princeton University Press. [Google Scholar] Li, Q., and Wooldridge, J. (2002), ‘Semiparametric Estimation for Partially Linear for Dependent Data with Generated Regressors’, Econometric Theory, 18, 625–645. doi: 10.1017/S0266466602183034[CrossRef], [Web of Science ®], [Google Scholar] Liebscher, E. (1998), ‘Estimation of the Density and the Regression Function under Mixing Conditions’, Statistics & Decisions, 19, 9–26. [Google Scholar] Mammen, E., Rothe, C., and Schienle, M. (2015), ‘Semiparametric Estimation with Generated Covariates’, Econometric Theory, 32, 1140–1177. doi: 10.1017/S0266466615000134[CrossRef], [Web of Science ®], [Google Scholar] Masry, E. (1996), ‘Multivariate Local Polynomial Regression for Time Series: Uniform Strong Consistency and Rates’, Journal of Time Series Analysis, 17, 571–599. doi: 10.1111/j.1467-9892.1996.tb00294.x[CrossRef], [Google Scholar] Mikosch, T. (1993), ‘A Weak Invariance Principle for Weighted U-Statistics with Varying Kernels’, Journal of Multivariate Analysis, 47, 82–102. doi: 10.1006/jmva.1993.1072[CrossRef], [Web of Science ®], [Google Scholar] Newey, W.K. (1994), ‘The Asymptotic Variance of Semiparametric Estimators’, Econometrica, 62, 1349–1382. doi: 10.2307/2951752[CrossRef], [Web of Science ®], [Google Scholar] Newey, W.K., and Smith, R.J. (2004), ‘Higher Order Properties of GMM and Generalized Empirical Likelihood Estimators’, Econometrica, 72, 219–256. doi: 10.1111/j.1468-0262.2004.00482.x[CrossRef], [Web of Science ®], [Google Scholar] Owen, A. (1988), ‘Empirical Likelihood Ratio Confidence Intervals for a Single Functional’, Biometrika, 36, 237–249. doi: 10.1093/biomet/75.2.237[CrossRef], [Web of Science ®], [Google Scholar] Powell, J., Stock, J., and Stoker, T. (1989), ‘Semiparametric Estimation of Weighted Average Derivatives’, Econometrica, 57, 1403–1430. doi: 10.2307/1913713[CrossRef], [Web of Science ®], [Google Scholar] Robinson, P. (1987), ‘Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form’, Econometrica, 55, 875–891. doi: 10.2307/1911033[CrossRef], [Web of Science ®], [Google Scholar] Schennach, S. (2007), ‘Point Estimation with Exponentially Tilted Empirical Likelihood’, Annals of Statistics, 35, 634–672. doi: 10.1214/009053606000001208[CrossRef], [Web of Science ®], [Google Scholar] Smith, R.J. (1997), ‘Alternative Semi-Parametric Likelihood Approaches to Generalised Method of Moments Estimation’, Economic Journal, 107, 503–519. doi: 10.1111/j.0013-0133.1997.174.x[CrossRef], [Web of Science ®], [Google Scholar] Smith, R.J. (2005), ‘Automatic Positive HAC Covariance Matrix and GMM Estimation’, Econometric Theory, 21, 158–170. doi: 10.1017/S0266466605050103[CrossRef], [Web of Science ®], [Google Scholar] Smith, R.J. (2011), ‘GEL Criteria for Moment Condition Models’, Econometric Theory, 27, 1192–1235. doi: 10.1017/S026646661100003X[CrossRef], [Web of Science ®], [Google Scholar] Sun, S., and Chiang, C. (1997), ‘Limiting Behaviour of the Perturbed Empirical Distribution Functions Evaluated at U-Statistics for Strongly Mixing Sequences of Random Variables’, Journal of Applied Mathematics and Stochastic Analysis, 10, 3–20. doi: 10.1155/S1048953397000026[CrossRef], [Google Scholar] Truong, Y., and Stone, C. (1992), ‘Nonparametric Function Estimation Involving Time Series’, Annals of Statistics, 20, 77–97. doi: 10.1214/aos/1176348513[CrossRef], [Web of Science ®], [Google Scholar] Truong, Y.K., and Stone, C.J. (1994), ‘Semiparametric Time Series Regression’, Journal of Time Series Analysis, 15, 405–428. doi: 10.1111/j.1467-9892.1994.tb00202.x[CrossRef], [Google Scholar] van der Vaart, A.W., and Wellner, J.A. (1996), Weak Convergence and Empirical Processes, New York: Springer.[CrossRef], [Google Scholar] Yoshihara, K. (1976), ‘Limiting Behavior of U-Statistics for Stationary, Absolutely Regular Processes’, Probability Theory and Related Fields, 35, 237–252.[CrossRef], [Web of Science ®], [Google Scholar] Yoshihara, K. (1989), ‘Limiting Behavior of Generalized Quadratic Forms Generated by Absolutely Regular Sequences II’, Yokohama Mathematical Journal, 37, 109–123. [Google Scholar] Yoshihara, K. (1992), ‘Limiting Behavior of Generalized Quadratic Forms Generated by Regular Sequences III’, Yokohama Mathematical Journal, 40, 1–9. [Google Scholar] Yu, B. (1993), ‘Density Estimation in the Norm for Dependent Data with Application to the Gibbs sampler’, Annals of Statistics, 21, 711–735. doi: 10.1214/aos/1176349146[CrossRef], [Web of Science ®], [Google Scholar] Yu, B. (1994), ‘Rates of Convergence for Empirical Processes of Stationary Mixing Sequences’, Annals of Probability, 22, 94–116. doi: 10.1214/aop/1176988849[CrossRef], [Web of Science ®], [Google Scholar] |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/79686 |