Bibi, Abdelouahab and Ghezal, Ahmed (2017): Asymptotic properties of QMLE for periodic asymmetric strong and semi-strong GARCH models.
Preview |
PDF
MPRA_paper_81126.pdf Download (360kB) | Preview |
Abstract
In this paper, we propose a natural extension of time-invariant coefficients threshold GARCH (TGARCH) processes to periodically time-varying coefficients (PTGARCH) one. So some theoretical probabilistic properties of such models are discussed, in particular, we establish firstly necessary and sufficient conditions which ensure the strict stationarity and ergodicity (in periodic sense) solution of PTGARCH. Secondary, we extend the standard results for the limit theory of the popular quasi-maximum likelihood estimator (QMLE) for estimating the unknown parameters of the model. More precisely, the strong consistency and the asymptotic normality of QMLE are studied in cases when the innovation process is an i.i.d (Strong case) and/or is not (Semi-strong case). The finite-sample properties of QMLE are illustrated by a Monte Carlo study. Our proposed model is applied to model the exchange rates of the Algerian Dinar against the U.S-dollar and the single European currency (Euro).
Item Type: | MPRA Paper |
---|---|
Original Title: | Asymptotic properties of QMLE for periodic asymmetric strong and semi-strong GARCH models. |
English Title: | Asymptotic properties of QMLE for periodic asymmetric strong and semi-strong GARCH models. |
Language: | English |
Keywords: | Periodic asymmetric GARCH model, Stationarity, Strong consistency, Asymptotic normality. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General |
Item ID: | 81126 |
Depositing User: | Pr. Abdelouahab Bibi |
Date Deposited: | 08 Sep 2017 06:14 |
Last Modified: | 03 Oct 2019 15:26 |
References: | 1. Aknouche, A., Bibi, A. (2008) Quasi-maximum likelihood estimation of periodic GARCH and periodic ARMA-GARCH processes. Journal of Time Series Analysis 29(1), pp. 19-45. 2. Aknouche, A., Guerbyenne, H. (2009) Periodic stationarity of random coefficient periodic autoregressions. Stat. Prob. Lett.79(7), pp. 990-996. 3. Bibi, A., Aknouche, A. (2008) On periodic GARCH processes: stationarity, existence of moments and geometric ergodicity. Mathematical Methods of Statistics. 17(4), pp. 305-316. 4. Billingsley, P. (1961) The Lindebergh-Lévy theorem for martingales. Proceedings of the American Mathematical Society 12, 788-792. 5. Billingsley, P. (1995) Probability and measure. (3rd Edition) Wiley-Interscience. 6. Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3), pp. 307-327. 7. Bollerslev, T. (2008) Glossary to ARCH (GARCH). Volatility and time series econometrics: Essays in honour of Robert F. Angel (eds. T. Bollerslev, J.R. Russell and M.Watson), Oxford University Press, Oxford, UK. 8. Bougerol, P., Picard, N. (1992) Strict stationarity of generalized autoregressive processes. Annals of Probability 20(4), pp. 1714-1730. 9. Chan, N.H. (2009) Statistical inference for non-stationary GARCH(p,q) models. Elec. J. Stat. 3, pp. 956-992. 10. Engle, R. F. (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of U. K. inflation. Econometrica 50(4), pp. 987-1008. 11. Escanciano, J.C. (2009). Quasi-Maximum likelihood estimation of semi-strong GARCH models. Econometric Theory, 25, 561-570. 12. Francq, C., Zakoïan, J. M. (2004) Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli 10(4), pp. 605-637. 13. Francq, C. and Zakoïan, J-M. (2012) Strict stationarity testing and estimation of explosive and stationary GARCH models. Econometrica 80(2), pp. 821-861. 14. Francq, C., Zakoïan, J.M. (2013) Inference in nonstationary asymmetric GARCH models. Ann. Statist. 41(4), pp. 1970-1998. 15. Hamdi, F., S. Souam (2013) Mixture periodic GARCH models: Applications to exchange rate modeling. Proceeding of the 5-th international conference on modeling, simulation and optimization (ICMSAO), Hammamet, 28-30 Apr. 2013, pp. 1-6. 16. Franses, , P.H., and Paap, R. (2000). Modelling day-of-the-week seasonality in the S&P 500 index. Applid Financial Economics, 10(5), 483-488. 17. Gladyshev, E.G. (1961) Periodically correlated random sequences. Soviet Math. Dokl. 2, pp. 385-388. 18. Glosten, L. R., Jagannathan, R., Runkle, D. (1993) On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance 48(5), pp. 1779-1801. 19. Gonzalez-Rivera, G., and Drosi, F.C. (1999) Efficiency comparisons of maximum likelihood-based estimators in GARCH models. J. of Econometrics, 93(1), pp. 93-111. 20. Hamadeh, T., Zakoïan, J.M. (2011) Asymptotic properties of LS and QML estimators for a class of nonlinear GARCH processes. Journal of Statistical Planning and Inference 141, pp. 488-507. 21. Jensen, S.T., Rahbak, A. (2004,a) Asymptotic Normality of the QMLE Estimator of ARCH in the nonstationary Case.Econometrica, 72(2), pp. 641-646. 22. Jensen, S.T., Rahbak, A. (2004,b) Asymptotic inference for nonstationary GARCH. Econometric Theory 20(6), pp. 1203-1226. 23. Kingman, J.F.C. (1973) Subadditive ergodic theory. The annals of probability. 1(6), pp. 883-909. 24. Lee, S.w., B.E. Hansen (1994). Asymptotic theory for the GARCH(1,1) quasi-maximum likelihood estimator. Econometric Theory, 10(1), 29-52. 25. Pen, J., H. Wang, and H. Tong (2008) Estimation and tests for power-transformed and threshold GARCH models. J. Econometrics,142(1), pp. 352-378. 26. Rabemanajara, R., Zakoïan, J. M. (1993) Threshold ARCH models and asymmetries in volatility. Journal of Applied Econometrics 8(1), pp. 31-49. 27. Stout, W.F. (1974) Almost sure convergence. Academic Press, New York. 28. Wang, H., and Pen, J. (2014) Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models. Stat. Prob. letters., 91, pp. 117-123. 29. Zakoïan, J. M. (1994) Threshold heteroskedastic models. Journal of Economic Dynamics and Control 18(5), pp. 931-955. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/81126 |