CHIKHI, Mohamed (2009): Identification non paramétrique d’un processus non linéaire hétéroscédastique. Published in: Revue d’Economie et de Statistiques Appliquées No. 12 (2009): pp. 9-27.
Preview |
PDF
1104.pdf Download (262kB) | Preview |
Abstract
Cet article vise à identifier un processus non linéaire par la méthode du noyau. Cette identification nécessite une sélection rigoureuse des coefficients de Markov et le choix de la fenêtre qui détermine le degré de lissage de l’estimateur.
This paper aims to identify a nonlinear process by the kernel methodology. This identification requires the selection of the Markov coefficients and the choice of bandwidth, which determines the degree of estimator’s smoothing.
Item Type: | MPRA Paper |
---|---|
Original Title: | Identification non paramétrique d’un processus non linéaire hétéroscédastique |
English Title: | Nonparametric identification of heteroscedastic nonlinear process |
Language: | French |
Keywords: | Final Prediction Error, kernel, bandwidth, functional autoregressive process. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics G - Financial Economics > G1 - General Financial Markets > G12 - Asset Pricing ; Trading Volume ; Bond Interest Rates |
Item ID: | 82108 |
Depositing User: | Mohamed CHIKHI |
Date Deposited: | 21 Oct 2017 22:36 |
Last Modified: | 21 Oct 2019 10:47 |
References: | 1. Auestad, B. and Tjostheim, D., Identification of nonlinear time series: first order characterization and order determination, Biometrika, 77, 4, 669-687. (1990) 2. Bosq, D et Lecoutre, J.P., Analyse et prévision des séries chronologiques, Masson, Paris. (1992) 3. Bosq, D., Sur la prédiction non paramétrique de variables aléatoires et mesures aléatoires, Pub. Interne, UER de Mathématiques, Lilles. (1979) 4. Bosq, D., Nonparametric statistics for stochastic processes, Lecture Notes in statistics, 110, Springer-verlag. (1996) 5. Box, G and Pierce, D., Distribution of residual autocorrelation in autoregressive integrated moving average time series models, J, Ann., Statist., 6, 461-464. (1970) 6. Brockmann, M., Locally adaptive bandwidth choice for kernel regression estimators, J. Amer. Statist. Assoc., 88, 1302-1309. (1993) 7. Cheng, B. and Tong, H., On consistent nonparametric order determination and chaos, Journal of The Royal Statistical Society, Series B, 54, 427-449. (1992) 8. Chiu, S.T., Bandwidth selection for kernel estimates with correlated noise, Statist. Probab. Lett., 8, 347-354. (1989) 9. Collomb, G., Estimation non paramétrique de probabilités conditionnelles, C.R. Acad. sci. Paris Sér I Math., 291, 427-430. (1980) 10. Doukhan, P., Mixing: Properties and examples, New York; Springer-Verlag. (1994) 11. Engle, R.F., Autoregressive Conditional Heteroscedasticity with Esti¬mates of the Variance of United Kingdom Inflation, Econometrica, 50(4) 987-1007. (1982) 12. Gannoun, A., Prédiction non paramétrique : médianogramme et méthode du noyau en estimation de la médiane conditionnelle, Statistique et Analyse des données, 16(23), 23-42. (1991) 13. Gouriéroux, C., Modèles ARCH et applications financières, Economica, Paris. (1992) 14. [15] Härdle, W and Chen, R., Nonparametric Time Series Analysis, a selective review with examples, Proceedings of the 50th session of the ISI, Peking. (1996) 15. Härdle, W and Yang, L., Nonparametric autoregression with Multiplicative Volatility and additive Mean, Discussion paper 96-62, SFB 373, Humboldt Universität zu Berlin. (1996) 16. Härdle, W, Lütkepohl, H and Chen, R., A review of Nonparametric Time Series Analysis, Discussion Paper 96-48, SFB 373, Humboldt Universität zu Berlin. (1996) 17. Härdle, W, Tsybakov, A. B and Yang, L., Nonparametric vector autoregression, Journal of Statistical Planning and Inference 68, 221-245. (1998) 18. Härdle, W., Applied nonparametric regression, Cambridge university press, Cambridge. (1990) 19. Lütkepohl, H. and Krätzig, M., Applied Time Series Econometrics. (2003) 20. Masry, E and Tjostheim, D., Nonparametric estimation and identification of non-linear ARCH time series: strong convergence and asymptotic normality, 21. Matzner-Lober, E., Prévision non paramétrique des processus stochastiques, Thèse de doctorat de l’université de Montpellier II. (1997) 22. Mizrach, B., A Simple Nonparametric Test for Independence. (1995) 23. Nadaraya, E.A., On estimating regression, Theory probability and their applications, 9, 134-137. (1964) 24. Robinson, P.M., Nonparametric estimators for time series, Journal of Time Series Analysis, 4, 185-207. (1983) 25. Rosa, M. A. C., Prévision robuste sous une hypothèse ergodique, Thèse de Doctorat de l’université de Toulouse I. (1993) 26. Schwarz, G., Estimating the dimension of a Model, Annals of Statistics, 6,461-464. (1978) 27. Silverman, B.W., Density estimation for Statistics and data analysis, Chapman & Hall. (1986) 28. Stute, W., On almost sure convergence of conditional empirical distribution function, Ann. of Prob. , 14, 891-901. (1986) 29. Tjostheim, D. and Auestad, B., Nonparametric identification of nonlinear time series: selecting significant lags, Journal of American Statistical Association, 89, 1410-1419. (1994b) 30. Tschernig, R and Yang, L., Nonparametric Lag Selection for Time Series, Journal of Time Series Analysis, forthcoming. (1998) 31. Tschernig, R., Nonlinearities in German Unemployment Rates: A Nonparametric Analysis, SFB 373 discussion paper 45. (1996) 32. Ullah, A., Nonparametric estimation and hypothesis testing in econometric models, Empec, 13, 223-249. (1988) 33. Vieu, P., order choice in nonlinear autoregressive models, statistics, OPA , 26, 307-328. (1995) 34. Watson, G.S., Smooth regression analysis, Sankhyä, A26, 359-372. (1964) 35. Yang, L and Tschernig, R., Multivariate bandwidth selection for local linear regression, Journal of the Royal Statistical Society, Series B, 61, 793-815. (1999) 36. Yang, L and Tschernig, R., Non- and semiparametric identification of seasonal nonlinear autoregression models, Econometric Theory 18: 1408-1448. (2002) |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/82108 |