Munich Personal RePEc Archive

The Rogers-Ramanujan Identities

Hossain, Fazlee and Das, Sabuj (2015): The Rogers-Ramanujan Identities. Published in: Turkish Journal of Analysis and Number Theory , Vol. 3, No. 2 (1 April 2015): pp. 37-42.


Download (439kB) | Preview


In 1894, Rogers found the two identities for the first time. In 1913, Ramanujan found the two identities later and then the two identities are known as The Rogers-Ramanujan Identities. In 1982, Baxter used the two identities in solving the Hard Hexagon Model in Statistical Mechanics. In 1829 Jacobi proved his triple product identity; it is used in proving The Rogers-Ramanujan Identities. In 1921, Ramanujan used Jacobi’s triple product identity in proving his famous partition congruences. This paper shows how to generate the generating function for , , and , and shows how to prove the Corollaries 1 and 2 with the help of Jacobi’s triple product identity. This paper shows how to prove the Remark 3 with the help of various auxiliary functions and shows how to prove The Rogers-Ramanujan Identities with help of Ramanujan’s device of the introduction of a second parameter a.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.