Baltagi, Badi H. and Fingleton, Bernard and Pirotte, Alain (2018): A Time-Space Dynamic Panel Data Model with Spatial Moving Average Errors.
Preview |
PDF
MPRA_paper_86371.pdf Download (723kB) | Preview |
Abstract
This paper focuses on the estimation and predictive performance of several estimators for the time-space dynamic panel data model with Spatial Moving Average Random Effects (SMA-RE) structure of the disturbances. A dynamic spatial Generalized Moments (GM) estimator is proposed which combines the approaches proposed by Baltagi, Fingleton and Pirotte (2014) and Fingleton (2008). The main idea is to mix non-spatial and spatial instruments to obtain consistent estimates of the parameters. Then, a forecasting approach is proposed and a linear predictor is derived. Using Monte Carlo simulations, we compare the short-run and long-run effects and evaluate the predictive efficiencies of optimal and various suboptimal predictors using the Root Mean Square Error (RMSE) criterion. Last, our approach is illustrated by an application in geographical economics which studies the employment levels across 255 NUTS regions of the EU over the period 2001-2012, with the last two years reserved for prediction.
Item Type: | MPRA Paper |
---|---|
Original Title: | A Time-Space Dynamic Panel Data Model with Spatial Moving Average Errors |
Language: | English |
Keywords: | Panel data; Spatial lag; Error components; Time-space; Dynamic;OLS; Within; GM; Spatial autocorrelation; Direct and indirect effects; Moving average; Prediction; Simulations, Rook contiguity, Interregional trade. |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C23 - Panel Data Models ; Spatio-temporal Models |
Item ID: | 86371 |
Depositing User: | Bernard Fingleton |
Date Deposited: | 26 Apr 2018 23:10 |
Last Modified: | 01 Oct 2019 18:20 |
References: | Abdel-Rahman, H. and Fujita, M. (1990). `Product variety, Marshallian externalities and city size', Journal of Regional Science, Vol. 30, pp. 165--83. Abeysinghe, T. and Lee, C. (1998). `Best linear unbiased disaggregation of annual GDP to quarterly figures: the case of Malaysia', Journal of Forecasting, Vol. 17, pp. 527-537. Anderson, T.W. and Hsiao, C. (1981). `Estimation of dynamic models with error components', Journal of the American Statistical Association, Vol. 76, pp. 598-606. Anderson, T.W. and Hsiao, C. (1982). `Formulation and estimation of dynamic models using panel data', Journal of Econometrics, Vol. 18, pp. 47-82. Anselin, L. (2001). Spatial econometrics. Ch. 14 in B.H. Baltagi, ed., A Companion to Theoretical Econometrics, Blackwell Publishers Lte, Massachusetts, pp. 310-330. Anselin, L., Le Gallo, J. and Jayet, H. (2008). Spatial panel econometrics, Ch. 19 in L. Mátyás and P. Sevestre, eds., The Econometrics of Panel Data: Fundamentals and Recent Developments in Theory and Practice, Springer-Verlag, Berlin, pp. 625-660. Arellano, M. and Bond, S. (1991). `Some tests of specification for panel data: Monte Carlo evidence and an application to employment', Review of Economic Studies, Vol. 58, pp. 277-297. Arellano, M. and Bover, O. (1995). `Another look at the instrumental variable estimation of error-components models'. Journal of Econometrics, Vol. 68, pp. 29-52. Baltagi, B.H. and Li, D. (2004). Prediction in the panel data model with spatial correlation, Chapter 13 in L. Anselin, R.J.G.M. Florax and S.J. Rey, eds., Advances in Spatial Econometrics: Methodology, Tools and Applications, Springer, Berlin, pp. 283-295. Baltagi, B.H. and Li, D. (2006). `Prediction in the panel data model with spatial correlation: the case of liquor', Spatial Economic Analysis, Vol. 1, pp. 175-185. Baltagi, B.H. and Yang, Z. (2013). `Heteroskedasticity and non-normality robust LM tests for spatial dependence', Regional Science and Urban Economics, Vol. 43, pp. 725-739. Baltagi, B.H., Fingleton, B. and Pirotte, A. (2014). `Estimating and forecasting with a dynamic spatial panel data model', Oxford Bulletin of Economics and Statistics, Vol. 76, pp. 112-136. Blundell, R. and Bond, S. (1998). `Initial conditions and moment restrictions in dynamic panel data models', Journal of Econometrics, Vol. 87, pp. 115-143. Blundell, R., Bond, S. and Windmeijer, F. (2000). `Estimation in dynamic panel data models: improving on the performance of the standard GMM estimator'. Advanced in Econometrics, 15, pp. 53-91. Bond, S. (2002). `Dynamic panel data models: a guide to micro data methods and practice', Portuguese Economic Journal, Vol. 1, pp. 141-162. Bouayad-Agha, S. and Védrine, L. (2010). `Estimation strategies for a spatial dynamic panel using GMM. A new approach to the convergence issue of European regions', Spatial Economic Analysis, Vol. 5, pp. 205-227. Brady, R.R. (2011). `Measuring the diffusion of housing prices across space and time', Journal of Applied Econometrics, Vol. 26, pp. 213-231. Ciccone, A. and Hall, R. E. (1996). `Productivity and the density of economic activity', American Economic Review, Vol. 86, pp. 54-70. Chow, G. and Lin, A.-I. (1971). `Best linear unbiased interpolation, distribution and extrapolation of time series by related series', Review of Economics and Statistics, Vol. 53, pp. 372-375. Debarsy, N., Ertur, C. and LeSage, J.P. (2012). `Interpreting dynamic space-time panel data models', Statistical Methodology, Vol. 9, pp. 158-171. Doran, J. and Fingleton, B. (2014). `Economic shocks and growth: spatio-temporal perspectives on Europe's economies in a time of crisis', Papers in Regional Science, Vol. 93, pp. S137-S165. Elhorst, J.P. (2001). `Dynamic models in space and time', Geographical Analysis, Vol. 33, pp. 119-140. Elhorst, J.P. (2010). `Dynamic panels with endogenous interaction effects when T is small', Regional Science and Urban Economics, Vol. 40, pp. 272-282. Elhorst, J.P. (2012). `Dynamic spatial panels: models, methods and inferences', Journal of Geographical Systems, Vol. 14, pp. 5-28. Elhorst, J.P. (2014). Spatial Econometrics: From Cross-Sectional Data to Spatial Panels, Heidelberg, New York, Dordrecht, London: Springer-Verlag. Feenstra, R.C., Lipsey, R.E., Deng, H., Ma, A.C. and Mo, H. (2005). `World trade flows: 1962-2000', NBER Working Paper No. 11040. Available at: http://www.nber.org/papers/w11040. Fingleton, B. (2008a). `A generalized method of moments estimator for a spatial panel model with an endogenous spatial lag and spatial moving average errors', Spatial Economic Analysis, Vol. 3, pp. 28-44. Fingleton, B. (2008b). `A generalized method of moments estimator for a spatial model with moving average errors, with application to real estate prices', Empirical Economics, Vol. 34, pp. 35--57. Fingleton, B. (2009). `Prediction using panel data regression with spatial random effects', International Regional Science Review, Vol. 32, pp. 195-220. Fingleton, B. and McCombie, J. (1998). 'Increasing returns and economic growth : some evidence for manufacturing from the European Union regions', Oxford Economic Papers, Vol. 50, pp. 89-105. Fingleton, B., Garretsen, H. and Martin, R.L. (2014). `Shocking aspects of monetary union: the vulnerability of regions in Euroland', Journal of Economic Geography, first published online January 8, 2015 doi:10.1093/jeg/lbu055. Franzese Jr., R.J. and Hays, J.C. (2007). `Spatial econometric models of cross-sectional interdependence in political science panel and time-series-cross-section data', Political Analysis, Vol. 15, pp. 140-164. Fujita, M. and Thisse, J.-F. (2002). Economics of Agglomeration, Cambridge University Press, Cambridge. Gianelle C., Goenaga, X., González, I. and Thissen, M. (2014). `Smart specialisation in the tangled web of European inter-regional trade', S3 Working Paper Series No. 05/2014, JRC-IPTS, Sevilla. Girardin, E. and Kholodilin, K. A. (2011). `How helpful are spatial effects in forecasting the growth of Chinese provinces?', Journal of Forecasting, Vol. 30, pp. 622-643. Goldberger, A.S. (1962). `Best linear unbiased prediction in the generalized linear regression model', Journal of the American Statistical Association, Vol. 57, pp. 369-375. Hsiao, C. (2003). Analysis of Panel Data, Cambridge University Press, New York. Jacobs, J.P.A.M., Ligthart, J.E. and Vrijburg, H. (2009). `Dynamic panel data models featuring endogenous interaction and spatially correlated errors', Working Paper n°09-15, International Studies Program, Georgia State University. Kapoor, M., Kelejian, H.H. and Prucha, I.R. (2007). `Panel data models with spatially correlated error components', Journal of Econometrics, Vol. 140, pp. 97-130. Kelejian, H.H., and Prucha, I.R. (1998). `A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances', Journal of Real Estate Finance and Economics, Vol. 17, 99-121. Kelejian, H.H. and Prucha, I.R. (1999). `A generalized moments estimator for the autoregressive parameter in a spatial model', International Economic Review, Vol. 40, pp. 509-533. Kelejian, H.H. and Prucha, I.R. (2007). `Relative efficiencies of various predictors in spatial econometric models containing spatial lags', Regional Science and Urban Economics, Vol. 37, pp. 363-374. Kelejian, H.H. (2016). `Critical issues in spatial models: error term specifications, additional endogenous variables, pre-testing, and Bayesian analysis', Letters in Spatial and Resource Sciences, Vol. 9, pp. 113-136. Kholodilin, K. A., Siliverstovs, B. and Kooths, S. (2008). `A dynamic panel data approach to the forecasting of the GDP of German Länder', Spatial Economic Analysis, Vol. 3, pp. 195-207. Korniotis, G.M. (2010). `Estimating panel models with internal and external habit formation', Journal of Business & Economic Statistics, Vol. 28, pp. 145-158. Kukenova, M. and Monteiro, J.-A. (2009). `Spatial dynamic panel model and system GMM: a Monte Carlo investigation', Munich Personal RePEc Archive paper n°14319. http://mpra.ub.uni-muenchen.de/14319/. Lee, L.-F. and Yu, J. (2010). `Some recent developments in spatial panel data models', Regional Science and Urban Economics, Vol. 40, pp. 255-271. Lee, L.-F. and Yu, J. (2014). `Efficient GMM estimation of spatial dynamic panel data models with fixed effects', Journal of Econometrics, Vol. 180, pp. 174-197. Lee, L.-F. and Yu, J. (2015). Spatial panel data models, Ch. 12 in B.H. Baltagi, ed., Oxford Handbook of Panel Data, Oxford: Oxford University Press. Lee, L.-F. and Yu, J. (2016). `Identification of spatial Durbin panel models', Journal of Applied Econometrics, Vol. 31, pp. 133-162. LeSage, J.P. and Pace, R.K. (2009). Introduction to Spatial Econometrics, Chapman & Hall/CRC Press, Boca Raton. Longhi, S. and Nijkamp, P. (2007). `Forecasting regional labor market developments under spatial heterogeneity and spatial correlation', International Regional Science Review, Vol. 30, pp. 100-119. Mutl, J. (2006). Dynamic panel data models with spatially correlated disturbances, PhD, University of Maryland. Ord, J.K. (1975). `Estimation methods for models of spatial interaction', Journal of the American Statistical Association, Vol. 70, pp. 120-126. Pace, R.K., LeSage, J.P. and Zhu, S. (2012). Spatial dependence in regressors, Advances in Econometrics, Vol. 30, T.B. Fomby, R. Carter Hill, I. Jeliazkov, J.C. Escanciano and E. Hillebrand (Series Eds., Volume editors: D. Terrell and D. Millimet), Emerald Group Publishing Limited, pp. 257-295. Parent, O. and LeSage, J.P. (2010). `A spatial dynamic panel model with random effects applied to commuting times', Transportation Research, Part B, Vol. 44, pp. 633-645. Parent, O. and LeSage, J.P. (2011). `A space-time filter for panel data models containing random effects', Computational Statistics and Data Analysis, Vol. 55, pp. 475-490. Parent, O. and LeSage, J.P. (2012). `Spatial dynamic panel data models with random effects', Regional Science & Urban Economics, Vol. 42, pp. 727-738. Pesaran, M.H. (2015). Time Series and Panel Data Econometrics, Oxford: Oxford University Press. Polasek, W., Verduras, C. and Sellner, R. (2010), `Bayesian methods for completing data in spatial models', Review of Economic Analysis, Vol. 2, pp. 194-214. Schanne, N., Wapler, R. and Weyh, A. (2010). `Regional unemployment forecasts with spatial interdependencies', International Journal of Forecasting, Vol. 26, pp. 908-926. Simini F., González M.C., Maritan A. and Barabási A. (2012). A universal model for mobility and migration patterns, Nature, 484, 96-100. Thissen, M., van Oort, F., Diodato, D. and Ruijs, A. (2013a). `Regional Competitiveness and Smart Specialization in Europe: Place-based Development in International Economic Networks', Cheltenham, UK: Edward Elgar Publishing. Thissen, M., Diodato, D. and van Oort, F. (2013b). `Integration and Convergence in Regional Europe: European Regional Trade Flows from 2000 to 2010', PBL publication number: 1036, PBL Netherlands Environmental Assessment Agency, The Hague/Bilthoven. Thissen, M., Diodato, D. and van Oort F. (2013c). `Integrated Regional Europe: European Regional Trade Flows in 2000', PBL publication number: 1035, PBL Netherlands Environmental Assessment Agency, The Hague/Bilthoven. Vidoli, F. and Mazziotta, C. (2010). `Spatial composite and disaggregate indicators: Chow-Lin methods and applications', Proceedings of the 45th Scientific Meeting of the Italian Statistical Society, Padua. Yang, Z.L. (2017). `Unified M-estimation of fixed-effects spatial dynamic models with short panels', forthcoming in Journal of Econometrics. Yu, J., de Jong, R. and Lee, L.-F. (2008). `Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large', Journal of Econometrics, Vol. 146, pp. 118-134. Yu, J., de Jong, R. and Lee, L.-F. (2012). `Estimation for spatial dynamic panel data with fixed effects: the case of spatial cointegration', Journal of Econometrics, Vol. 167, pp. 16-37. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/86371 |