Gómez-Ríos, María del Carmen and Juárez-Luna, David (2018): Precio de las emisiones de CO2 en la generación eléctrica.
PDF
MPRA_paper_89915.pdf Download (401kB) |
Abstract
This paper aims to identify the effects of including the price of CO2 emissions in the Total Levelized Cost of Generation (CTNG, in Spanish) of the combined cycle power plant. Monte Carlo simulation is used to estimate the probability densities of the CTNG and the Total Levelized Cost of Generation with Externalities (CTNGE). The effects of the price of CO2 emissions in the CTNG of the combined cycle plant are analysed through the concepts of stochastic dominance. We find that the price of CO2 emissions makes the CTNGE of the combined cycle plant to be higher and riskier than the CTNG. On the other hand, the CTNGE of the combined cycle plant is very sensitive to changes in the price of CO2 emissions. The analysis suggests that the share of electricity generation through combined cycle plants should be reduced to replace it with clean technologies. A limitation of the work is that the CTNG and CTNGE probability densities, generated through Monte Carlo simulation, depend on the data used, so they are sensitive to changes in the input parameters.
Item Type: | MPRA Paper |
---|---|
Original Title: | Precio de las emisiones de CO2 en la generación eléctrica |
English Title: | Price of CO2 emissions in electricity generation |
Language: | Spanish |
Keywords: | CO2 Emissions, Generation, Electricity, Levelized Cost. |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q40 - General Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q53 - Air Pollution ; Water Pollution ; Noise ; Hazardous Waste ; Solid Waste ; Recycling |
Item ID: | 89915 |
Depositing User: | Dr. David Juárez-Luna |
Date Deposited: | 12 Nov 2018 14:47 |
Last Modified: | 01 Oct 2019 02:34 |
References: | 1. Annual Energy Outlook. (2017) [AEO (2017)]. Editado por la U.S. Energy Information Administration. 2. Camila Barragán-Beaud, C., Pizarro-Alonso, A., Xylia, M., Syri, S., and Semida S. (2018). “Carbon tax or emissions trading? An analysis of economic and political feasibility of policy mechanisms for greenhouse gas emissions reduction in the Mexican power sector”. Energy Policy 122, 287-299. 3. Comisión Federal de Electricidad. (2014). Costos y Parámetros de Referencia para la Formulación de Proyectos de Inversión del Sector Eléctrico (COPAR). Subdirección de Programación, Comisión Federal de Electricidad. 4. Gómez-Ríos, M. d. C. (2016). Aplicación de modelos estocásticos en centrales nucleares generadoras de energía eléctrica para detectar el impacto que tiene la volatilidad de los mercados financieros en los costos nivelados de generación. En C. IMEF, Tópicos actuales de Finanzas. pp220 - 260. 5. Gómez-Ríos, M. d. C. (2008). La Energía Nuclear: una alternativa de generación de energía eléctrica de carga base en México. Tesis Doctoral. 6. Hrafnkelsson, B., Oddsson, V., and R. Unnthorsson. (2016). "A Method for Estimating Annual Energy Production Using Monte Carlo Wind Speed Simulation." Energies 9, no. 4: 286. 7. ICF Consulting Canada, Inc. (2017). Long-Term Carbon Price Forecast Report. 8. International Energy Agency. (2017a) [IEA, 2017a]. CO2 emissions from fuel combustion: Overview. 9. International Energy Agency. (2017b) [IEA, 2017b]. Natural gas information: Overview. 10. Forbes C., Evans, M., Hastings, N., and Peacock, B. (2011). Statistical Distributions, 4th ed. New York: Wiley. 11. Grupo Intergubernamental de expertos sobre el Cambio Climático (2015) [IPCC, 2015]. Cambio Climático 2014, Mitigación del cambio climático. Unidad de apoyo técnico del Grupo de trabajo III. 12. Hrafnkelsson, B., Oddsson, V., and R. Unnthorsson. (2016). "A Method for Estimating Annual Energy Production Using Monte Carlo Wind Speed Simulation." Energies 9, no. 4: 286. 13. Jesse D. Jenkins, J. D. (2014). Political economy constraints on carbon pricing policies: What are the implications for economic efficiency, environmental efficacy, and climate policy design?,Energy Policy, Volume 69, 467-777. 14. Karkhov, A. (2002). Economic evaluation of bids for nuclear power plants. Atomnaya Tekhnika za Rubezhom, 23 - 26. 15. Khindanova, I. (2013). A Monte Carlo Model of a Wind Power Generation Investment. The Journal of Applied Business and Economics, 15(1), 94. 16. Leape, J. (2007). Ec270 Public Finance Lecture notes, LSE. 17. Ley General del Cambio Climático. (2012). Diario Oficial de la Federación. Miércoles 6 de junio de 2012. 18. Mochón M. F., y Carreón, R. V. G. (2011). Microeconomía con aplicaciones a América Latina. 1ª. Edición. Ed. Mc Graw Hill, 2011. 19. Nuclear Energy Agency (NEA) e International Energy Agency (IEA). (2015). Projected Costs of Generating Electricity. 20. Mas-Colell, A., Whinston, M. D. y Green, J. R. (1995). Microeconomic theory. Oxford University Press. 21. Nuclear Energy Agency (NEA) e International Energy Agency (IEA). (2015). Projected Costs of Generating Electricity. 22. Organisation for Economic Co-operation and Development. (2014). International Energy Agency 2013 Annual Report. International Energy Agency. 23. ONU, México. (14/Sept/2016). Senado de México ratifica el Acuerdo de París sobre cambio climático. Recuperado de http://www.onu.org.mx/senado-de-mexico-ratifica-el-acuerdo-de-paris-sobre-cambio-climatico/. 24. Presidencia de la República, (26/Jun/2016). Declaración de Líderes de América del Norte sobre la Alianza del clima, energía limpia y medio ambiente. Recuperado de https://www.gob.mx/presidencia/documentos/declaracion-de-lideres-de-america-del-norte-sobre-la-alianza-del-clima-energia-limpia-y-medio-ambiente. 25. Ramirez, J. R., Alonso, G., Perry, R. y Ortiz, J. (2006). Assessment of MOX fuel assembly design for a BWR mixed reload. Nuclear Technology. Vol. 156. 26. Rausch, S., Metcalf, G. E., and Reilly, J. M. (2011). Distributional impacts of carbon pricing: A general equilibrium approach with micro-data for households, Energy Economics, Vol. 33 (1), pp. S20-S33. 27. Rode, D., Fishbeck, P., and Dean, S. (2001), “Monte Carlo Methods for Appraisal and valuation: A Case Study of a Nuclear Power Plant”, Journal of Structured and Project Finance, 7:3. p. 38-48. 28. Roques, F. (2006). Power generation investments in liberalised markets: methodologies to capture risk, flexibility, and portfolio diversity. Économies et Sociétés, 40(10/11), 1563. 29. Ross, S., (1999). Simulación. Prentice Hall. 30. Secretaría de Energía (2018). Programa del Desarrollo del Sistema Eléctrico Nacional 2018-2032. 31. Tvinnereim, E. and Mehling, M. (2018). Carbon pricing and deep decarbonisation, Energy Policy, Vol. 121, 185-189. 32. Zakeri, A., Dehghanian, F., Fahimnia, B., and Sarkis, J. (2015) Carbon pricing versus emissions trading: A supply chain planning perspective, International Journal of Production Economics, Vol. 164, 197-205. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/89915 |