Fedotenkov, Igor (2018): A review of more than one hundred Pareto-tail index estimators.
PDF
MPRA_paper_90072.pdf Download (443kB) |
Abstract
This paper reviews more than one hundred Pareto (and equivalent) tail index estimators. It focuses on univariate estimators for nontruncated data. We discuss basic ideas of these estimators and provide their analytical expressions. As samples from heavy-tailed distributions are analysed by researchers from various fields of science, the paper provides nontechnical explanations of the methods, which could be understood by researchers with intermediate skills in statistics. We also discuss strengths and weaknesses of the estimators, if they are known. The paper can be viewed as a catalog or a reference book on Pareto-tail index estimators.
Item Type: | MPRA Paper |
---|---|
Original Title: | A review of more than one hundred Pareto-tail index estimators |
English Title: | A review of more than one hundred Pareto-tail index estimators |
Language: | English |
Keywords: | Heavy tails, Pareto distribution, tail index, review, extreme value index |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C18 - Methodological Issues: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics |
Item ID: | 90072 |
Depositing User: | Igor Fedotenkov |
Date Deposited: | 18 Nov 2018 03:23 |
Last Modified: | 26 Sep 2019 14:39 |
References: | Aban, I. B. and M. M. Meerschaert (2001). Shifted Hill's estimator for heavy tails. Communications in Statistics-Simulation and Computation 30 (4), 949-962. Aban, I. B. and M. M. Meerschaert (2004). Generalized least-squares estimators for the thickness of heavy tails. Journal of Statistical Planning and Inference 119 (2), 341-352. Agterberg, F. (1995). Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review 37 (1), 1-8. Axtell, R. L. (2001). Zipf distribution of US firm sizes. Science 293 (5536), 1818-1820. Bacro, J. N. and M. Brito (1995). Weak limiting behaviour of a simple tail Pareto-index estimator. Journal of Statistical Planning and inference 45 (1-2), 7-19. Baek, C. and V. Pipiras (2010). Estimation of parameters in heavy-tailed distribution when its second order tail parameter is known. Journal of Statistical Planning and Inference 140 (7), 1957-1967. Beirlant, J., G. Dierckx, Y. Goegebeur, and G. Matthys (1999). Tail index estimation and an exponential regression model. Extremes 2 (2), 177-200. Beirlant, J., G. Dierckx, and A. Guillou (2005). Estimation of the extreme value index and generalized quantile plots. Bernoulli 11 (6), 949-970. Beirlant, J., G. Dierckx, A. Guillou, and C. Staaricaa (2002). On exponential representations of log-spacings of extreme order statistics. Extremes 5 (2), 157-180. Beirlant, J., F. Figueiredo, M. I. Gomes, and B. Vandewalle (2008). Improved reduced-bias tail index and quantile estimators. Journal of Statistical Planning and Inference 138 (6), 1851-1870. Beirlant, J. and A. Guillou (2001). Pareto index estimation under moderate right censoring. Scandinavian Actuarial Journal 2001 (2), 111-125. Beirlant, J., A. Guillou, G. Dierckx, and A. Fils-Villetard (2007). Estimation of the extreme value index and extreme quantiles under random censoring. Extremes 10 (3), 151-174. Beirlant, J. and J. L. Teugels (1989). Asymptotic normality of Hill's estimator. In Extreme value theory, pp. 148-155. Springer. Beirlant, J., P. Vynckier, and J. L. Teugels (1996a). Excess functions and estimation of the extreme-value index. Bernoulli 2 (4), 293-318. Beirlant, J., P. Vynckier, and J. L. Teugels (1996). Tail index estimation, Pareto quantile plots regression diagnostics. Journal of the American Statistical Association 91 (436), 1659-1667. Benhabib, J., A. Bisin, and M. Luo (2017). Earnings inequality and other determinants of wealth inequality. American Economic Review 107 (5), 593-97. Benhabib, J., A. Bisin, and S. Zhu (2011). The distribution of wealth and fiscal policy in economies with finitely lived agents. Econometrica 79 (1), 123-157. Beran, J. and D. Schell (2012). On robust tail index estimation. Computational Statistics & Data Analysis 56 (11), 3430-3443. Beran, J., D. Schell, and M. Stehlik (2014). The harmonic moment tail index estimator: asymptotic distribution and robustness. Annals of the Institute of Statistical Mathematics 66 (1), 193-220. Brazauskas, V. and R. Serfling (2000). Robust and efficient estimation of the tail index of a single-parameter Pareto distribution. North American Actuarial Journal 4 (4), 12-27. Brilhante, M.F., G.-M. P. D. (2014). The mean-of-order p extreme value index estimator revisited. In New Advances in Statistical Modeling and Application, pp. 163-175. Berlin. Brilhante, M. F., M. I. Gomes, and D. Pestana (2013). A simple generalisation of the Hill estimator. Computational Statistics & Data Analysis 57 (1), 518-535. Brito, M., L. Cavalcante, and A. C. M. Freitas (2016). Bias-corrected geometric-type estimators of the tail index. Journal of Physics A: Mathematical and Theoretical 49 (21), 214003. Brito, M. and A. C. M. Freitas (2003). Limiting behaviour of a geometric-type estimator for tail indices. Insurance: Mathematics and Economics 33 (2), 211-226. Brzezinski, M. (2016). Robust estimation of the Pareto tail index: a Monte Carlo analysis. Empirical Economics 51 (1), 1-30. Caeiro, F. and M. I. Gomes (2002). A class of asymptotically unbiased semiparametric estimators of the tail index. Test 11 (2), 345-364. Caeiro, F. and M. I. Gomes (2006). A new class of estimators of a scale second order parameter. Extremes 9 (3-4), 193-211. Caeiro, F., M. I. Gomes, J. Beirlant, and T. de Wet (2016). Mean-of-order p reduced-bias extreme value index estimation under a third-order framework. Extremes 19 (4), 561-589. Caeiro, F., M. I. Gomes, and D. Pestana (2005). Direct reduction of bias of the classical Hill estimator. Revstat 3 (2), 113-136. Chaney, T. (2008). Distorted gravity: the intensive and extensive margins of international trade. American Economic Review 98 (4), 1707-1721. Ciuperca, G. and C. Mercadier (2010). Semi-parametric estimation for heavy tailed distributions. Extremes 13 (1), 55-87. Cowell, F. A. and E. Flachaire (2007). Income distribution and inequality measurement: The problem of extreme values. Journal of Econometrics 141 (2), 1044-1072. Csorgo, S., P. Deheuvels, and D. Mason (1985). Kernel estimates of the tail index of a distribution. The Annals of Statistics 13, 1050-1077. Csorgo, S. and L. Viharos (1998). Estimating the tail index. In Asymptotic Methods in Probability and Statistics, pp. 833-881. Elsevier. Csorgo, S. and D. M. Mason (1985). Central limit theorems for sums of extreme values. In Mathematical Proceedings of the Cambridge Philosophical Society, Volume 98, pp. 547-558. Danielsson, J., D. W. Jansen, and C. G. De Vries (1996). The method of moments ratio estimator for the tail shape parameter. Communications in Statistics-Theory and Methods 25 (4), 711-720. Das, K. P. and S. C. Halder (2016). Understanding extreme stock trading volume by generalized Pareto distribution. The North Carolina Journal of Mathematics and Statistics 2, 45-60. Davydov, Y., V. Paulauskas, and A. Rackauskas (2000). More on p-stable convex sets in Banach spaces. Journal of Theoretical Probability 13 (1), 39-64. De Haan, L. and T. T. Pereira (1999). Estimating the index of a stable distribution. Statistics & Probability Letters 41 (1), 39-55. De Haan, L. and S. Resnick (1998). On asymptotic normality of the Hill estimator. Stochastic Models 14 (4), 849-866. De Haan, L. and S. I. Resnick (1980). A simple asymptotic estimate for the index of a stable distribution. Journal of the Royal Statistical Society. Series B 42 (1), 83-87. De Haan, L. d. and L. Peng (1998). Comparison of tail index estimators. Statistica Neerlandica 52 (1), 60-70. De Haan, L. F. M. (1970). On regular variation and its application to the weak convergence of sample extremes. Mathematisch Centrum, Amsterdam. Deheuvels, P., E. Haeusler, and D. M. Mason (1988). Almost sure convergence of the Hill estimator. In Mathematical Proceedings of the Cambridge Philosophical Society, Volume 104, pp. 371-381. Dekkers, A. L., J. H. Einmahl, and L. De Haan (1989). A moment estimator for the index of an extreme-value distribution. The Annals of Statistics 17 (4), 1833-1855. Drees, H. (1995). Refined Pickands estimators of the extreme value index. The Annals of Statistics 23 (6), 2059-2080. Drees, H. (1996). Refined Pickands estimators with bias correction. Communications in Statistics-Theory and Methods 25 (4), 837-851. Drees, H. (1998). A general class of estimators of the extreme value index. Journal of Statistical Planning and Inference 66 (1), 95-112. Drees, H. (1998). On smooth statistical tail functionals. Scandinavian Journal of Statistics 25 (1), 187-210. Dupuis, D. and M. Tsao (1998). A hybrid estimator for generalized Pareto and extreme-value distributions. Communications in Statistics-Theory and Methods 27 (4), 925-941. Dupuis, D. J. and S. Morgenthaler (2002). Robust weighted likelihood estimators with an application to bivariate extreme value problems. Canadian Journal of Statistics 30 (1), 17-36. Dupuis, D. J. and M.-P. Victoria-Feser (2006). A robust prediction error criterion for Pareto modelling of upper tails. Canadian Journal of Statistics 34 (4), 639-658. Falk, M. (1994). Efficiency of convex combinations of Pickands estimator of the extreme value index. Journal of Nonparametric Statistics 4 (2), 133-147 Fan, Z. (2004). Estimation problems for distributions with heavy tails. Journal of Statistical Planning and Inference 123 (1), 13-40. Ferriere, R. and B. Cazelles (1999). Universal power laws govern intermittent rarity in communities of interacting species. Ecology 80 (5), 1505-1521. Feuerverger, A. and P. Hall (1999). Estimating a tail exponent by modelling departure from a Pareto distribution. The Annals of Statistics 27 (2), 760-781. Fialova, A., J. Jureckova, and J. Picek (2004). Estimating Pareto tail index based on sample means. REVSTAT - Statistical Journal 2 (1), 75-100. Finkelstein, M., H. G. Tucker, and J. Alan Veeh (2006). Pareto tail index estimation revisited. North American Actuarial Journal 10 (1), 1-10. Fraga Alves, M. (1995). Estimation of the tail parameter in the domain of attraction of an extremal distribution. Journal of Statistical Planning and Inference 45 (1-2), 143-173. Fraga Alves, M. (2001). A location invariant Hill-type estimator. Extremes 4 (3), 199-217. Fraga Alves, M., M. I. Gomes, and L. de Haan (2003). A new class of semiparametric estimators of the second order parameter. Portugaliae Mathematica 60 (2), 193-214. Fraga Alves, M. I., M. I. Gomes, L. de Haan, and C. Neves (2009). Mixed moment estimator and location invariant alternatives. Extremes 12 (2), 149-185. Gabaix, X. (2009). Power laws in economics and finance. Annual Review of Economics 1 (1), 255-294. Gabaix, X., P. Gopikrishnan, V. Plerou, and H. E. Stanley (2003). A theory of power-law distributions in financial market fluctuations. Nature 423 (6937), 267. Gabaix, X. and R. Ibragimov (2011). Rank- 1/2: a simple way to improve the OLS estimation of tail exponents. Journal of Business & Economic Statistics 29 (1), 24-39. Gabaix, X. and A. Landier (2008). Why has CEO pay increased so much? The Quarterly Journal of Economics 123 (1), 49-100. Gastwirth, J. L. (1972). The estimation of the Lorenz curve and Gini index. The Review of Economics and Statistics 54, 306-316. Gomes, M. I., M. I. F. Alves, and P. A. Santos (2008). PORT Hill and moment estimators for heavy-tailed models. Communications in Statistics - Simulation and Computation 37 (7), 1281-1306. Gomes, M. I., F. Caeiro, and F. Figueiredo (2004). Bias reduction of a tail index estimator through an external estimation of the second-order parameter. Statistics 38 (6), 497-510. Gomes, M. I., F. Figueiredo, and S. Mendonca (2005). Asymptotically best linear unbiased tail estimators under a second-order regular variation condition. Journal of Statistical Planning and Inference 134 (2), 409-433. Gomes, M. I. and A. Guillou (2015). Extreme value theory and statistics of univariate extremes: A review. International Statistical Review 83 (2), 263-292. Gomes, M. I. and L. Henriques-Rodrigues (2016). Competitive estimation of the extreme value index. Statistics & Probability Letters 117, 128-135. Gomes, M. I., L. Henriques-Rodrigues, and B. Manjunath (2016). Mean-oforder-p location-invariant extreme value index estimation. Revstat 14 (3), 273-296. Gomes, M. I. and M. J. Martins (2001). Generalizations of the Hill estimator - asymptotic versus finite sample behaviour. Journal of Statistical Planning and Inference 93 (1-2), 161-180. Gomes, M. I. and M. J. Martins (2002). Asymptotically unbiased estimators of the tail index based on external estimation of the second order parameter. Extremes 5 (1), 5-31. Gomes, M. I. and M. J. Martins (2004). Bias reduction and explicit semiparametric estimation of the tail index. Journal of Statistical Planning and Inference 124 (2), 361-378. Gomes, M. I., M. J. Martins, and M. Neves (2000). Alternatives to a semiparametric estimator of parameters of rare events - the Jackknife methodology. Extremes 3 (3), 207-229. Gomes, M. I., M. J. Martins, and M. Neves (2002). Generalized Jackknife semi-parametric estimators of the tail index. Portugaliae Mathematica 59 (4), 393-408. Gomes, M. I., M. J. Martins, and M. Neves (2007). Improving second order reduced bias extreme value index estimation. Revstat 5 (2), 177-207. Gomes, M. I., C. Miranda, and C. Viseu (2007). Reduced-bias tail index estimation and the Jackknife methodology. Statistica Neerlandica 61 (2), 243-270. Gomes, M. I. and O. Oliveira (2003). Maximum likelihood revisited under a semi-parametric context-estimation of the tail index. Journal of Statistical Computation and Simulation 73 (4), 285-301. Gomes, M. I., H. Pereira, and M. C. Miranda (2005). Revisiting the role of the Jackknife methodology in the estimation of a positive tail index. Communications in Statistics-Theory and Methods 34 (2), 319-335. Groeneboom, P., H. Lopuhaa, and P. De Wolf (2003). Kernel-type estimators for the extreme value index. The Annals of Statistics 31 (6), 1956-1995. Haeusler, E. and J. L. Teugels (1985). On asymptotic normality of Hill's estimator for the exponent of regular variation. The Annals of Statistics 13 (1), 743-756. Hall, P. (1982). On some simple estimates of an exponent of regular variation. Journal of the Royal Statistical Society. Series B (Methodological) 44 (1), 37-42. Hall, P. and A. Welsh (1985). Adaptive estimates of parameters of regular variation. The Annals of Statistics 13, 331-341. Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The Annals of Statistics 3 (5), 1163-1174. Hinloopen, J. and C. Van Marrewijk (2012). Power laws and comparative advantage. Applied Economics 44 (12), 1483-1507. Hosking, J. R. M. and J. R. Wallis (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29 (3), 339-349. Huebner, F., D. Liu, and J. Fernandez (1998). Queueing performance comparison of traffic models for internet traffic. In Global Telecommunications Conference, 1998. GLOBECOM 1998. The Bridge to Global Integration. IEEE, Volume 1, pp. 471-476. IEEE. Huisman, R., K. G. Koedijk, C. J. M. Kool, and F. Palm (2001). Tail index estimates in small samples. Journal of Business & Economic Statistics 19 (2), 208-216. Husler, J., D. Li, and S. Muller (2006). Weighted least squares estimation of the extreme value index. Statistics & Probability Letters 76 (9), 920-930. Jureckova, J. (2000). Test of tails based on extreme regression quantiles. Statistics & Probability Letters 49 (1), 53-61. Jureckova, J. and J. Picek (2001). A class of tests on the tail index. Extremes 4 (2), 165-183. Jureckova, J. and J. Picek (2004). Estimates of the tail index based on nonparametric tests. In Theory and Applications of Recent Robust Methods, pp. 141-152. Springer. Kaizoji, T. (2003). Scaling behavior in land markets. Physica A: Statistical Mechanics and its Applications 326 (1-2), 256-264. Kang, S. and J. Song (2017). Parameter and quantile estimation for the generalized Pareto distribution in peaks over threshold framework. Journal of the Korean Statistical Society 46 (4), 487-501. Knight, K. (2007). A simple modification of the Hill estimator with applications to robustness and bias reduction. Unpublished paper: Statistics Department, University of Toronto. Kratz, M. and S. I. Resnick (1996). The qq-estimator and heavy tails. Stochastic Models 12 (4), 699-724. LePage, R., M. Woodroofe, and J. Zinn (1981). Convergence to a stable distribution via order statistics. The Annals of Probability 9 (4), 624-632. Li, J., Z. Peng, and S. Nadarajah (2008). A class of unbiased location invariant Hill-type estimators for heavy tailed distributions. Electronic Journal of Statistics 2, 829-847. Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business 36, 394-419. Mason, D. M. (1982). Laws of large numbers for sums of extreme values. The Annals of Probability 10 (3), 754-764. McElroy, T. (2007). Tail index estimation for parametric families using log moments. Research Report Series (Statistics Nr. 2007-2). McElroy, T. and D. N. Politis (2007). Moment-based tail index estimation. Journal of Statistical Planning and Inference 137 (4), 1389-1406. Meerschaert, M. M. and H.-P. Scheffler (1998). A simple robust estimation method for the thickness of heavy tails. Journal of Statistical Planning and Inference 71 (1), 19-34. Mittnik, S. and S. T. Rachev (1993). Modeling asset returns with alternative stable distributions. Econometric Reviews 12 (3), 261-330. Muller, S. and K. Rubach (2009). Smooth tail-index estimation. Journal of Statistical Computation and Simulation 79 (9), 1155-1167. Muller, U. K. and Y. Wang (2017). Fixed-k asymptotic inference about tail properties. Journal of the American Statistical Association 112 (519), 1334-1343. Nadaraya, E. A. (1964). On estimating regression. Theory of Probability & Its Applications 9 (1), 141-142. Newman, M. E. (2005). Power laws, Pareto distributions and Zipf's law. Contemporary physics 46 (5), 323-351. Nordhaus, W. D. (2012). Economic policy in the face of severe tail events. Journal of Public Economic Theory 14 (2), 197-219. Nuyts, J. (2010). Inference about the tail of a distribution: Improvement on the Hill estimator. International Journal of Mathematics and Mathematical Sciences 2010, 1-16. Ogwang, T. (2011). Power laws in top wealth distributions: Evidence from Canada. Empirical Economics 41 (2), 473-486. Pareto, V. (1897). Cours de'conomie politique. Lausanne, Rouge. Paulauskas, V. (2003). A new estimator for a tail index. Acta Applicandae Mathematica 79, 55-67. Paulauskas, V. and M. Vaiciulis (2011). Several modifications of DPR estimator of the tail index. Lithuanian Mathematical Journal 51 (1), 36-50. Paulauskas, V. and M. Vaiciulis (2012). Estimation of the tail index in the max-aggregation scheme. Lithuanian Mathematical Journal 52 (3), 297-315. Paulauskas, V. and M. Vaiciulis (2013). On an improvement of Hill and some other estimators. Lithuanian Mathematical Journal 53 (3), 336-355. Paulauskas, V. and M. Vaiciulis (2017). A class of new tail index estimators. Annals of the Institute of Statistical Mathematics 69 (2), 461-487. Paulauskas, V. and M. Vaiciulis (2017). Comparison of the several parameterized estimators for the positive extreme value index. Journal of Statistical Computation and Simulation 87 (7), 1342-1362. Peng, L. (1998). Asymptotically unbiased estimators for the extreme-value index. Statistics & Probability Letters 38 (2), 107-115. Pickands III, J. (1975). Statistical inference using extreme order statistics. The Annals of Statistics 3 (1), 119-131. Pisarenko, V. and D. Sornette (2003). Characterization of the frequency of extreme earthquake events by the generalized Pareto distribution. Pure and Applied Geophysics 160 (12), 2343-2364. Politis, D. N. (2002). A new approach on estimation of the tail index. Comptes Rendus Mathematique 335 (3), 279-282. Qi, Y. (2010). On the tail index of a heavy tailed distribution. Annals of the Institute of Statistical Mathematics 62 (2), 277-298. Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika 43 (3/4), 353-360. Rosen, K. T. and M. Resnick (1980). The size distribution of cities: an examination of the Pareto law and primacy. Journal of Urban Economics 8 (2), 165-186. Santos, P. A., M. Alves, and M. I. Gomes (2006). Peaks over random threshold methodology for tail index and high quantile estimation. Revstat, 227-247. Schultze, J. and J. Steinebach (1996). On least squares estimates of an exponential tail coefficient. Statistics & Risk Modeling 14 (4), 353-372. Seekell, D. A. and M. L. Pace (2011). Does the Pareto distribution adequately describe the size-distribution of lakes? Limnology and Oceanography 56 (1), 350-356. Segers, J. (2001). Residual estimators. Journal of Statistical Planning and Inference 98 (1-2), 15-27. Segers, J. (2005). Generalized Pickands estimators for the extreme value index. Journal of Statistical Planning and Inference 128 (2), 381-396. Simon, H. A. and C. P. Bonini (1958). The size distribution of business firms. The American Economic Review 48 (4), 607-617. Smith, R. L. (1987). Estimating tails of probability distributions. The Annals of Statistics 15, 1174-1207. Soo, K. T. (2005). Zipf's law for cities: A cross-country investigation. Regional science and urban Economics 35 (3), 239-263. Toda, A. A. (2012). The double power law in income distribution: Explanations and evidence. Journal of Economic Behavior & Organization 84 (1), 364-381. Toda, A. A. and K. Walsh (2015). The double power law in consumption and implications for testing euler equations. Journal of Political Economy 123 (5), 1177-1200. Tripathi, Y. M., S. Kumar, and C. Petropoulos (2014). Improved estimators for parameters of a Pareto distribution with a restricted scale. Statistical Methodology 18, 1-13. Vaiciulis, M. (2009). An estimator of the tail index based on increment ratio statistics. Lithuanian Mathematical Journal 49 (2), 222-233. Vaiciulis, M. (2012). Asymptotic properties of generalized DPR statistic. Lithuanian Mathematical Journal 52 (1), 95-110. van Zyl, J. M. (2015). Estimation of the shape parameter of a generalized Pareto distribution based on a transformation to Pareto distributed variables. Journal of Statistical Theory and Practice 9 (1), 171-183. Vandewalle, B., J. Beirlant, A. Christmann, and M. Hubert (2007). A robust estimator for the tail index of Pareto-type distributions. Computational Statistics & Data Analysis 51 (12), 6252-6268. Victoria-Feser, M.-P. and E. Ronchetti (1994). Robust methods for personal income distribution models. Canadian Journal of Statistics 22 (2), 247-258. Viharos, L. (1999). Weighted least-squares estimators of tail indices. Probability and Mathematical Statistics 19 (2), 249-265. Wang, C. and G. Chen (2016). A new hybrid estimation method for the generalized Pareto distribution. Communications in Statistics-Theory and Methods 45 (14), 4285-4294. Weiss, L. (1971). Asymptotic inference about a density function at an end of its range. Naval Research Logistics 18 (1), 111-114. Yun, S. (2000). A class of Pickands-type estimators for the extreme value index. Journal of Statistical Planning and Inference 83 (1), 113-124. Yun, S. (2002). On a generalized Pickands estimator of the extreme value index. Journal of Statistical Planning and Inference 102 (2), 389-409. Zhang, J. (2007). Likelihood moment estimation for the generalized Pareto distribution. Australian & New Zealand Journal of Statistics 49 (1), 69-77. Zhang, J. (2010). Improving on estimation for the generalized Pareto distribution. Technometrics 52 (3), 335-339. Zhang, J. and M. A. Stephens (2009). A new and efficient estimation method for the generalized Pareto distribution. Technometrics 51 (3), 316-325. Zhong, J. and X. Zhao (2012). Modeling complicated behavior of stock prices using discrete self-excited multifractal process. Systems Engineering Procedia 3, 110-118. Zipf, G. K. (1941). National unity and disunity; the nation as a bio-social organism. Bloomington, Indiana: Principia Press. Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley, Reading, Massachusetts. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/90072 |