Subbotin, Viktor (2007): Asymptotic and bootstrap properties of rank regressions.
Preview |
PDF
MPRA_paper_9030.pdf Download (382kB) | Preview |
Abstract
The paper develops the bootstrap theory and extends the asymptotic theory of rank estimators, such as the Maximum Rank Correlation Estimator (MRC) of Han (1987), Monotone Rank Estimator (MR) of Cavanagh and Sherman (1998) or Pairwise-Difference Rank Estimators (PDR) of Abrevaya (2003). It is known that under general conditions these estimators have asymptotic normal distributions, but the asymptotic variances are difficult to find. Here we prove that the quantiles and the variances of the asymptotic distributions can be consistently estimated by the nonparametric bootstrap. We investigate the accuracy of inference based on the asymptotic approximation and the bootstrap, and provide bounds on the associated error. In the case of MRC and MR, the bound is a function of the sample size of order close to n^{-1/6}. The PDR estimators belong to a special subclass of rank estimators for which the bound is vanishing with the rate close to n^{-1/2}. The theoretical findings are illustrated with Monte-Carlo experiments and a real data example.
Item Type: | MPRA Paper |
---|---|
Original Title: | Asymptotic and bootstrap properties of rank regressions |
Language: | English |
Keywords: | Rank Estimators, Bootstrap, M-Estimators, U-Statistics, U-Processes |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General |
Item ID: | 9030 |
Depositing User: | Viktor Subbotin |
Date Deposited: | 09 Jun 2008 08:30 |
Last Modified: | 30 Sep 2019 00:29 |
References: | Abadie A., and Imbens, G. (2006). On the failure of the bootstrap for matching estimators, mimeo. Abrevaya, J. (1999). Computation of the Maximum Rank Correlation Estimator. Economics Letters, 62, 279-285. Abrevaya, J. (1999a). Leapfrog estimation of a fixed-effects model with unknown transformation of the dependent variable. Journal of Econometrics, 93, 203-228. Abrevaya, J. (1999b). Rank estimation of a transformation model with observed truncation. Econometric J., 2, 292-305. Abrevaya, J. (2003). Pairwise-difference rank estimation of the transformation model. J. Bus. Econom. Statist. 21, no. 3, 437--447. Ai, C.; Chen, X. (2003). Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica 71, no. 6, 1795--1843. Arcones, M. A. (1995). The asymptotic accuracy of the bootstrap of U-quantiles. Ann. Statist. 23, no. 5, 1802--1822. Arcones, M. A.; Chen, Z.; Giné, E. (1994). Estimators related to U-processes with applications to multivariate medians: asymptotic normality. Ann. Statist. 22, no. 3, 1460--1477. Arcones, M. A.; Giné, E. (1992). On the bootstrap of U and V-statistics. Ann. Statist. 20, no. 2, 655--674. Arcones, M. A.; Giné, E. (1993). Limit theorems for U-processes. Ann. Probab. 21, no. 3, 1494--1542. Arcones, M. A.; Giné, E. (1994). U-processes indexed by Vapnik-Červonenkis classes of functions with applications to asymptotics and bootstrap of U-statistics with estimated parameters. Stochastic Process. Appl. 52, no. 1, 17--38. Asparouhova, E.; Golanski, R.; Kasprzyk, K.; Sherman, R. P.; Asparouhov, T. (2002). Rank estimators for a transformation model. Econometric Theory 18, no. 5, 1099--1120. Bhattacharya R., and Ranga Rao R. (1976). Normal Approximation and Asymptotic Expansions, Wiley, New York. Bickel, P.J., and Freedman, D.A. (1981). Some Asymptotic Theory for the Bootstrap. The Annals of Statistics, 9, 1196-1217. Bolthausen, E.; Götze, F. (1993). The rate of convergence for multivariate sampling statistics. Ann. Statist. 21, no. 4, 1692--1710. Cavanagh, C., and Sherman, R. P. (1998). Rank Estimators for Monotonic Index Models. Journal of Econometrics, 84, 351-381. Chen, S. (2002). Rank estimation of transformation models. Econometrica 70, no. 4, 1683--1697. De Angelis, D., Hall, P., and Young G.A. (1993). Analytical and Bootstrap Approximations to Estimator Distributions in L¹ Regressions. Journal of the American Statistical Association, 88, 1310-1316. De la Peña, V. H. (1992). Decoupling and Khintchine's inequalities for U-statistics. Ann. Probab. 20, no. 4, 1877--1892. Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7, no. 1, 1--26. Giné, E.; Mason, D. M. (2007). On local U--statistic processes and the estimation of densities of functions of several sample variables. Annals of Statistics, to appear. Giné E. and Zinn J. (1990). Bootstrapping general empirical measures. Annals of Probability 18, 851-869. Giné E. and Zinn J. (1992). On Hoffmann-Jørgensen's inequality for U-processes. In Probability in Banach spaces 8, Birkhauser Progress in Probability Series, Vol. 30, pp. 80-91, (R. Dudley, J. Kuelbs, M. Hahn eds.), Boston. Hall, P. (1992). The bootstrap and Edgeworth expansion. Springer Series in Statistics. Springer-Verlag, New York. Hall P., and Horowitz J. (1996). Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators, Econometrica, 64, 891-916. Han, A. K. (1987). Non-Parametric Analysis of a General Regression Model. The Maximum Rank Correlation Estimator. Journal of Econometrics, 35, 303-316. Han, A. K. (1987b). A nonparametric analysis of transformations. J. Econometrics 35, no. 2-3, 191--209. Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J. Econometrics 58, no. 1-2, 71--120. Khan S., and Tamer E. (2007). Partial Rank Estimation of Duration Models with General Forms of Censoring. Journal of Econometrics 136, 251-280. Klein R.W., and Spady R.H. (1993). An Efficient Semiparametric Estimator for Binary Response Models. Econometrica, 61, 387-421. Lee, M. (1999) A root-N consistent semiparametric estimator for related-effect binary response panel data. Econometrica, 67, 427--433. Nishiyama, Y.; Robinson, P. M. (2005). The bootstrap and the Edgeworth correction for semiparametric averaged derivatives. Econometrica 73, no. 3, 903--948. Nolan, D., and Pollard, D. (1987). U-Processes: Rates of Convergence. The Annals of Statistics, 15, 780--799. Pakes, A., and Pollard, D. (1989). Simulation and the Asymptotics of Optimization Estimators. Econometrica, 57, 1027--1057. Pollard, D. (1985). New ways to prove central limit theorems. Econometric Theory, 1, 295--313. Pollard, D. (1989). Asymptotics via Empirical Processes (with Discussion). Statistical Science, 4, 341--366. Powell J. L., Stock J. H., and Stoker T. M. (1989). Semiparametric Estimation of Index Coefficients. Econometrica, 57, 1403-1430. Ruud, P. A. (2000), An Introduction to Classical Econometric Theory, Oxford, U.K.: Oxford University Press. Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics. New York: Wiley. Sherman, R.P. (1993). The Limiting Distribution of the Maximum Rank Correlation Estimator. Econometrica, 61, 123-137. Sherman, R.P. (1994). Maximal Inequalities for Degenerate U-Processes with Applications to Optimization Estimators. Annals of Statistics, 22, 439-459. Van der Vaart, A.W., and Wellner, J.A. (1996). Weak Convergence and Empirical Processes. New York: Springer-Verlag. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/9030 |