Nguyen, Duc Khuong and Walther, Thomas (2017): Modeling and forecasting commodity market volatility with long-term economic and financial variables.
This is the latest version of this item.
PDF
MPRA_paper_90348.pdf Download (510kB) |
Abstract
This paper investigates the time-varying volatility patterns of some major commodities as well as the potential factors that drive their long-term volatility component. For this purpose, we make use of a recently proposed GARCH-MIDAS approach which typically allows us to examine the role of economic and financial variables of different frequencies. Using commodity futures for crude oil (WTI and Brent), gold, silver and platinum, our results show the necessity of disentangling the short- and long-term components in modeling and forecasting commodity volatility. They also indicate that the long-term volatility of most commodity futures is significantly driven by the level of the general real economic activity as well as the changes in consumer sentiment, industrial production, and economic policy uncertainty. However, the forecasting results are not alike across commodity futures as no single model fits all commodities.
Item Type: | MPRA Paper |
---|---|
Original Title: | Modeling and forecasting commodity market volatility with long-term economic and financial variables |
Language: | English |
Keywords: | Commodity futures, GARCH,Long-term volatility, Macroeconomic effects, Mixed data sampling. |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 90348 |
Depositing User: | Prof. Duc Khuong Nguyen |
Date Deposited: | 06 Dec 2018 15:52 |
Last Modified: | 28 Sep 2019 23:27 |
References: | Adams, Z., & Gluck, T. (2015). Financialization in commodity markets: A passing trend or the new normal? Journal of Banking & Finance, 60, 93–111. doi:10.1016/j.jbankfin.2015. 07.008. Arouri, M. E. H., Jouini, J., & Nguyen, D. K. (2011). Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management. Journal of International Money and Finance, 30, 1387–1405. doi:10.1016/j.jimonfin.2011.07.008. Asgharian, H., Hou, A. J., & Javed, F. (2013). The importance of the macroeconomic variables in forecasting stock return variance: A GARCH-MIDAS approach. Journal of Forecasting, 32, 600–612. doi:10.1002/for.2256. Bahloul, W., & Bouri, A. (2016). The impact of investor sentiment on returns and conditional volatility in U.S. futures markets. Journal of Multinational Financial Management, 36, 89–102. doi:10.1016/j.mulfin.2016.07.003. Barsky, R., & Kilian, L. (2001). Do We Really Know that Oil Caused the Great Stagflation? A Monetary Alternative. Technical Report 734 National Bureau of Economic Research Cambridge, MA. doi:10.3386/w8389. Batten, J. A., Ciner, C., & Lucey, B. M. (2010). The macroeconomic determinants of volatility in precious metals markets. Resources Policy, 35, 65–71. doi:10.1016/j.resourpol.2009. 12.002. Baumeister, C., Gue ́rin, P., & Kilian, L. (2014). Do high-frequency financial data help forecast oil prices? The MIDAS touch at work. International Journal of Forecasting, 31, 238–252. doi:10.1016/j.ijforecast.2014.06.005. Baur, D. G., & Lucey, B. M. (2010). Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold. Financial Review, 45, 217–229. doi:10.1111/j.1540-6288.2010. 00244.x. Baur, D. G., & McDermott, T. K. (2010). Is gold a safe haven? International evidence. Journal of Banking and Finance, 34, 1886–1898. doi:10.1016/j.jbankfin.2009.12.008. Bekiros, S., Nguyen, D. K., Sandoval Junior, L., & Uddin, G. S. (2017). Information diffu- sion, cluster formation and entropy-based network dynamics in equity and commodity markets. European Journal of Operational Research, 256, 945–961. doi:10.1016/j.ejor.2016. 06.052. Bodie, Z., & Rosansky, V. I. (1980). Risk and Return in Commodity Futures. Financial Analysts Journal, 36, 27–39. doi:10.2469/faj.v36.n3.27. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Eco- nometrics, 31, 307–327. doi:10.1016/0304-4076(86)90063-1. Bu ̈yu ̈ks ̧ahin, B., & Robe, M. A. (2011). Does ’Paper Oil’ Matter? Energy Markets’ Financializa- tion and Equity-Commodity Co-Movements. URL: http://www.ssrn.com/abstract= 1855264. Bu ̈yu ̈ks ̧ahin, B., & Robe, M. A. (2014). Speculators, commodities and cross-market linkages. Journal of International Money and Finance, 42, 38–70. doi:10.1016/j.jimonfin.2013. 08.004. Conrad, C., & Loch, K. (2015). Anticipating Long-Term Stock Market Volatility. Journal of Applied Econometrics, 30, 1090–1114. doi:10.1002/jae.2404. Conrad, C., Loch, K., & Rittler, D. (2014). On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets. Journal of Empirical Finance, 29, 26–40. doi:10.1016/j.jempfin.2014.03.009. Daskalaki, C., Kostakis, A., & Skiadopoulos, G. (2014). Are there common factors in individual commodity futures returns? Journal of Banking and Finance, 40, 346–363. doi:10.1016/j. jbankfin.2013.11.034. Daskalaki, C., & Skiadopoulos, G. (2011). Should investors include commodities in their portfolios after all? New evidence. Journal of Banking and Finance, 35, 2606–2626. doi:10.1016/j. jbankfin.2011.02.022. Domanski, D., & Heath, A. (2007). Financial investors and commodity markets. BIS Quarterly Review, (pp. 53–67). Donmez, A., & Magrini, E. (2013). Agricultural Commodity Price Volatility and Its Macroeco- nomic Determinants. Technical Report EUR 26183 EN Joint Research Centre Luxembourg. doi:10.2791/23669. Dwyer, A., Gardner, G., & Williams, T. (2011). Global Commodity Markets – Price Volatility and Financialisation. RBA Bulletin, 49–58. Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, 987–1007. doi:10.2307/1912773. Engle, R. F., Ghysels, E., & Sohn, B. (2013). Stock Market Volatility and Macroeconomic Funda- mentals. Review of Economics and Statistics, 95, 776–797. Engle, R. F., & Lee, G. (1999). A long-run and short-run component model of stock return volatil- ity. In R. Engle, & H. White (Eds.), Cointegration, Causality, and Forecasting: A Festschrift in Honour of Clive W.J. Granger (pp. 475–497). Oxford: Oxford University Press. Engle, R. F., & Rangel, J. G. (2008). The spline-GARCH model for low-frequency volatility and its global macroeconomic causes. Review of Financial Studies, 21, 1187–1222. doi:10.1093/ rfs/hhn004. Filis, G., Degiannakis, S., & Floros, C. (2011). Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries. International Review of Financial Analysis, 20, 152–164. doi:10.1016/j.irfa.2011.02.014. Ghysels, E., Santa-Clara, P., & Valkanov, R. (2004). The MIDAS Touch: Mixed Data Sampling Regression Models. CIRANO Working Papers, 20, 1–33. Ghysels, E., Sinko, A., & Valkanov, R. (2007). MIDAS Regressions: Further Results and New Directions. Econometric Reviews, 26, 53–90. doi:10.1080/07474930600972467. Gorton, G., & Rouwenhorst, K. G. (2006). Facts and Fantasies about Commodity Futures. Finan- cial Analysts Journal, 62, 47–68. doi:10.3386/w10595. Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The Model Confidence Set. Econometrica, 79, 453–497. doi:10.3982/ECTA5771. Karali, B., & Power, G. J. (2013). Short- and long-run determinants of commodity price volatility. American Journal of Agricultural Economics, 95, 724–738. doi:10.1093/ajae/aas122. Karali, B., & Ramirez, O. A. (2014). Macro determinants of volatility and volatility spillover in energy markets. Energy Economics, 46, 413–421. doi:10.1016/j.eneco.2014.06.004. Kilian, L. (2009). Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market. American Economic Review, 99, 1053–1069. doi:10.1257/aer. 99.3.1053. Kilian, L., & Vega, C. (2011). Do Energy Prices Respond to U.S. Macroeconomic News? A Test of the Hypothesis of Predetermined Energy Prices. Review of Economics and Statistics, 93, 660–671. doi:10.1162/REST{\_}a{\_}00086. Klein, T. (2017). Dynamic Correlation of Precious Metals and Flight-to-Quality in Developed Markets. Finance Research Letters, 23, 283–290. doi:10.1016/j.frl.2017.05.002. Kupiec, P. H. (1995). Techniques for Verifying the Accuracy of Risk Measurement Models. The Journal of Derivatives, 3, 73–84. doi:10.3905/jod.1995.407942. Lintner, J. V. (1983). The potential role of managed commodity-financial futures accounts (and/or funds) in portfolios of stocks and bonds. Division of Research, Graduate School of Business Administration, Harvard University. Lucey, B. M., Sharma, S. S., & Vigne, S. A. (2017). Gold and inflation(s) – A time-varying relationship. Economic Modelling, 67, 88–101. doi:10.1016/j.econmod.2016.10.008. Narayan, P. K., Narayan, S., & Sharma, S. S. (2013). An analysis of commodity markets: What gain for investors? Journal of Banking & Finance, 37, 3878–3889. doi:10.1016/j.jbankfin. 2013.07.009. Narayan, P. K., & Sharma, S. S. (2011). New evidence on oil price and firm returns. Journal of Banking and Finance, 35, 3253–3262. doi:10.1016/j.jbankfin.2011.05.010. Nieto, B., Novales, A., & Rubio, G. (2015). Macroeconomic and Financial Determinants of the Volatility of Corporate Bond Returns. Quarterly Journal of Finance, 05, 1550021. doi:10. 1142/S2010139215500214. Opschoor, A., van Dijk, D., & van der Wel, M. (2014). Predicting volatility and correlations with Financial Conditions Indexes. Journal of Empirical Finance, 29, 435–447. doi:10.1016/j. jempfin.2014.10.003. Pan, Z., Wang, Y., Wu, C., & Yin, L. (2017). Oil price volatility and macroeconomic fundament- als: A regime switching GARCH-MIDAS model. Journal of Empirical Finance, 43, 130–142. doi:10.1016/j.jempfin.2017.06.005. Pe ́rignon, C., & Smith, D. R. (2008). A New Approach to Comparing VaR Estimation Methods. The Journal of Derivatives, 16, 54–66. doi:10.3905/JOD.2008.16.2.054. Pindyck, R. S. (2004). Volatility and commodity price dynamics. Journal of Futures Markets, 24, 1029–1047. doi:10.1002/fut.20120. Prokopczuk, M., Stancu, A., & Symeonidis, L. (2017). The economic drivers of time-varying commodity market volatility. URL: https://papers.ssrn.com/sol3/papers.cfm? abstract_id=2678883. Sanso ́, A., Arago ́, V., & Carrion, J. (2004). Testing for changes in the unconditional variance of financial time series. Revista de Econom ́ıa financiera, 4, 32–53. Schwert, G. W. (1989). Why Does Stock Market Volatility Change Over Time? The Journal of Finance, 44, 1115–1153. doi:10.1111/j.1540-6261.1989.tb02647.x. Silvennoinen, A., & Thorp, S. (2013). Financialization, crisis and commodity correlation dynamics. Journal of International Financial Markets, Institutions and Money, 24, 42–65. doi:10.1016/ j.intfin.2012.11.007. Smales, L. A. (2017). Commodity market volatility in the presence of U.S. and Chinese macroeco- nomic news. Journal of Commodity Markets, 7, 15–27. doi:10.1016/j.jcomm.2017.06. 002. Tang, K., & Xiong, W. (2012). Index Investment and the Financialization of Commodities. Finan- cial Analysts Journal, 68, 54–74. doi:10.2469/faj.v68.n6.5. Verma, R. (2012). Behavioral Finance and Pricing of Derivatives: Implications for Dodd-Frank Act. Review of Futures Markets, 20, 21–67. Walther, T., Klein, T., Pham Thu, H., & Piontek, K. (2017). True or spurious long memory in European Non-EMU currencies. Research in International Business and Finance, 40C, 217– 230. doi:10.1016/j.ribaf.2017.01.003. Wang, F., & Ghysels, E. (2015). Econometric Analysis of Volatility Component Models. Econo- metric Theory, 31, 362–393. doi:10.1017/S0266466614000334. Yin, L. (2016). Does oil price respond to macroeconomic uncertainty? New evidence. Empirical Economics, 51, 921–938. doi:10.1007/s00181-015-1027-7. Yin, L., & Zhou, Y. (2016). What Drives Long-term Oil Market Volatility? Fundamentals versus Speculation. Economics: The Open-Access, Open-Assessment E-Journal, 10, 1–26. doi:10. 5018/economics-ejournal.ja.2016-20. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/90348 |
Available Versions of this Item
-
Modeling and forecasting commodity market volatility with long-term economic and financial variables. (deposited 09 Feb 2018 15:23)
- Modeling and forecasting commodity market volatility with long-term economic and financial variables. (deposited 06 Dec 2018 15:52) [Currently Displayed]