Carpinteyro, Martha and Venegas-Martínez, Francisco and Martínez-García, Miguel Ángel (2018): Modeling Returns of Stock Indexes through Fractional Brownian Motion Combined with Jump Processes and Modulated by Markov Chains.
PDF
MPRA_paper_90549.pdf Download (1MB) |
Abstract
We develop a mathematical model useful to describe the stochastic dynamics and return distribution of the stock indexes of world’s main economies (USA, Eurozone, UK and Japan) and of the main emerging markets (China, Brazil, and México) incorporating risk factors as: idiosyncratic volatility, market volatility, and regime-switching volatility. It is assumed that the returns of the stock indexes are driven by fractional Brownian motions combined with Poisson processes and modulated by Markov chains. To do that, we calibrate Jump-GARCH models and estimate Markov regime-switching stochastic volatility models. The proposed models properly describe the stochastic dynamics of the returns of the stock indexes under study during 1994-2017. The main empirical finding is that the USA stock market stays in high volatility most of the time and presents more jumps than other indexes, and that Brazil stock market has the biggest intensity of jumps during 1994-2017. The outcome supports the hypothesis of long-term memory of stock markets.
Resumen: Esta investigación desarrolla un modelo matemático útil para describir la dinámica estocástica y la distribución de los rendimientos de los índices bursátiles de las principales economías del mundo (EE.UU. Zona Euro, Reino Unido y Japón) y de los mayores mercados emergentes (China, Brasil y México) mediante la incorporación de factores de riesgo como: volatilidad idiosincrática, volatilidad del mercado y volatilidad de cambio de régimen. Se supone que los rendimientos de los índices bursátiles son conducidos por movimientos fraccionales brownianos combinados con procesos de Poisson y modulados por cadenas de Markov. Para lograr este objetivo se calibran modelos Jump-GARCH y se estiman modelos de volatilidad estocástica de cambio de régimen markoviano. Los modelos propuestos describen adecuadamente la dinámica estocástica de los rendimientos de los índices bursátiles bajo estudio durante 1994-2017. Los principales hallazgos empíricos reflejan que el mercado de capitales de EE.UU. se mantiene en alta volatilidad la mayor parte del tiempo y presenta más saltos que los otros índices y el mercado accionario de Brasil presenta grandes saltos con mayor intensidad. El resultado sostiene la hipótesis de memoria de largo pazo en el mercado de capitales.
Item Type: | MPRA Paper |
---|---|
Original Title: | Modeling Returns of Stock Indexes through Fractional Brownian Motion Combined with Jump Processes and Modulated by Markov Chains |
Language: | English |
Keywords: | Stock index return, fractional Brownian motion, Markov regime-switching, jump processes. |
Subjects: | G - Financial Economics > G1 - General Financial Markets > G15 - International Financial Markets |
Item ID: | 90549 |
Depositing User: | Dr. Francisco Venegas-Martínez |
Date Deposited: | 15 Dec 2018 13:12 |
Last Modified: | 05 Oct 2019 17:07 |
References: | An, B., Ang, A., Bali, T. and Cakici, N. (2014). The joint cross section of stocks and options. Journal of Finance. Vol. 69, No. 5, pp. 2279-2338. Ang, A. Chen, J. and Xing, Y. (2006). Downside risk. Review of Financial Studies. Vol. 19, No. 4, pp. 1191-1239. Ang, A., Hodrick, R., Xing, Y. and Zhang, X. (2004) The cross-section of volatility and expected returns. National Bureau of Economics Research. Working paper 10852. Baillie, R. (1996) Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics. Vol. 74, No. 1, pp. 3-30. Bates, D. (2008) The market for crash risk. Journal of Economic Dynamics and Control. Vol. 32, No. 7, pp. 2291-2321. Bender, C., Sottinen, T. and Valkeila, E. (2000) Fractional processes as models in stochastic finance. Advance Mathematical Methods for Finance. Springer, pp. 75-103. Branger, N., Schlag, C. and Schneider, E. (2007) General equilibrium with stochastic volatility and jumps. Department of Business and Economics, University of Southern Denmark. Cajueiro, D. and Tabak, B. (2005) Possible causes of long-range dependence in the Brazilian stock market. Physica A. Statistical Mechanics and its Applications. Vol. 345, No. 3, pp. 635-645. Carr, P. and Wu, L. (2004). Stochastic skew in currency options. Center for Financial Econometrics, NYU STERN. Chen, C., Lin, E. and Lin Yi-Ru. (2013). A Bayesian perspective on mixed GARCH models with jumps. Uncertainty Analysis in Econometrics, Springer. pp. 141–154. Christoffersen, P., Heston, S. and Jacobs, K. (2009). The Shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well? Management Science, Vol. 55, No. 12, pp. 1914-1932. Cremers, M., Halling, M. and Weinbaum, D. (2015) Aggregate jump and volatility risk in the cross-section of stock returns. Journal of Finance, Vol. 70, No. 2, pp. 577-614. Das, S. and Sundaram, R. (2009). Of smiles and smirks: A term structure perspective. Journal of Financial and Quantitative Analysis. Vol. 34, No. 2, pp. 211-239. Du, J. and Kapadia, N. (2011). The tail and volatility index. University of Massachusetts, Amhert. Durham, G. and Park, Y. (2012). Beyond stochastic volatility and jumps in returns and volatility. Leeds School of Business, University of Colorado. USA. Duncan, T. and Pasik-Duncan, B. (1991) Stochastic calculus for fractional Brownian motion I. Department of Mathematics, University of Kansas. Hamilton, J. D., and Gang Lin (1996). Stock market volatility and the business cycle. Journal of Applied Econometrics, Vol. 11, No. 5, pp. 573-593. Hamilton, J. (2005) Regime-switching models. Macroeconometrics and Series Analysis. Springer, pp. 202-209. Harvey, C. and Siddique, A. (1999) Autoregressive conditional skewness. National Bureau of Economic Research, Cambridge, MA. Heston, S. (1993) A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, Vol. 6, No. 2, pp. 327-431. Jamdee, S. and Los, C. (2005) Long memory options: LM evidence and simulations. University of California at Irvine. Johnson, T. (2002) Volatility, momentum, and Time-Varying skewness in foreign exchange returns. Journal of Business and Economic Statistics, Vol. 20, No. 3, pp. 390-411. Krause, A. (2001) An overview of asset pricing models. University of Bath School of Management. UK. López-Herrera, F. Venegas-Martínez, F. and Sánchez-Daza, A. (2009). Memoria larga de la volatilidad de los rendimientos del mercado mexicano de capitales. Análisis Económico, Vol. 24, No. 56, pp. 129-146. López-Herrera F., J. I. Villagómez-Bahena y F. Venegas-Martínez (2009). Dependencia de largo plazo en rendimientos y volatilidades de acciones mexicanas. Tiempo Económico, Vol. 4, No. 13, pp. 5-17. Mandelbrot, B. and Van Ness, J. (1968) Fractional Brownian motion, fractional noises and applications. SIAM Review, Vol. 10, No. 4, pp. 422-437. Pham, H. and Touzi, N. (1996) Equilibrium state prices in a stochastic volatility model. Mathematical Finance, Vol. 6, No. 2, pp. 215-236. Santa-Clara, P. and Yan, S. (2010) Crashes, volatility and the equity premium: Lesson from S&P 500 options. The Review of Economics and Statistics, Vol. 92, No. 2, pp. 435–451. Taqqu, M. (1967) Benoît Mandelbrot and fractional Brownian motion. Statistical Science. Vol. 28, No. 1, pp. 131-134. Venegas-Martínez, F. y B. González-Aréchiga (2000). Mercados financieros incompletos y su impacto en los programas de estabilización de precios: el caso mexicano. Momento Económico, No. 111, pp. 20-27. Vallejo-Jiménez, B. and Venegas-Martínez, F. (2017). Optimal consumption and portfolio rules when the asset price is driven by a time-inhomogeneous Markov modulated fractional Brownian motion with multiple Poisson jumps, Economics Bulletin, Vol. 37, No.1, pp. 314-326. Venegas-Martínez, F. (2000). On Consumption, Investment, and Risk. Economía Mexicana, Nueva Época, Vol. 9, No. 2, pp. 227-244. Venegas-Martínez, F. (2001). Temporary Stabilization: A Stochastic Analysis. Journal of Economic Dynamics and Control, Vol. 25, No. 9, pp. 1429-1449. (JCR) ISSN: 0165-1889. Venegas-Martínez, F. (2001). Opciones, cobertura y procesos de difusión con saltos: una aplicación a los títulos de GCARSO. Estudios Económicos, Vol. 16, No. 32, pp. 203-226. Venegas-Martínez, F. (2008). Riesgos financieros y económicos. Productos derivados y decisiones económicas bajo incertidumbre. 2da. edición. Cengage Editores. México. Venegas-Martínez, F. E islas-Camargo, A. (2005). Volatilidad en los mercados de América Latina. Comercio Exterior, Vol. 55. No. 11, pp. 936-947. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/90549 |