Ensslen, Axel and Ringler, Philipp and Dörr, Lasse and Jochem, Patrick and Zimmermann, Florian and Fichtner, Wolf (2018): Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets. Published in: Energy Research & Social Science , Vol. 42, (22 March 2018): pp. 112-126.
PDF
MPRA_paper_91543.pdf Download (2MB) |
Abstract
Over the past few years, registration figures of plug-in electric vehicles have increased rapidly in industrialized countries. This could cause considerable mid- to long-term effects on electricity markets. To tackle potential challenges specific to electric power systems, we develop a load-shift-incentivizing electricity tariff that is suitable for electric vehicle users and analyze the tariff scheme in three parts. First, acceptance is analyzed based on surveys conducted among fleet managers and electric vehicle users. Corresponding results are used to calibrate the tariff. Secondly, load flexibilities of electric vehicle charging are used in an agent-based electricity market simulation model of the French and German wholesale electricity markets to simulate corresponding market impacts. Thirdly, the charging manager’s (‘aggregator’) business model is analyzed. Our results reveal that the tariff is highly suitable for incentivizing vehicle users to provide load flexibilities, which consequently increase the contribution margins of the charging managers. The main drawback is the potential for ‘avalanche effects’ on wholesale electricity markets increasing charging mangers’ expenditures, especially in France.
Item Type: | MPRA Paper |
---|---|
Original Title: | Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets |
Language: | English |
Keywords: | E-Mobility Electric vehicles Controlled charging Electricity markets |
Subjects: | O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O33 - Technological Change: Choices and Consequences ; Diffusion Processes R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R4 - Transportation Economics > R42 - Government and Private Investment Analysis ; Road Maintenance ; Transportation Planning |
Item ID: | 91543 |
Depositing User: | PD Dr. Patrick Jochem |
Date Deposited: | 25 Jan 2019 14:20 |
Last Modified: | 27 Sep 2019 08:00 |
References: | [1]IEA, Global EV Outlook 2017: Two Million and Counting, (2017) https://www.iea.org/publications/freepublications/publication/GlobalEVOutlook2017.pdf. [2]A.C. Mersky, F. Sprei, C. Samaras, Z. Qian, Effectiveness of incentives on electric vehicle adoption in Norway, Transp. Res. Part D: Transp. Environ. 46 (2016) 56–68, http://dx.doi.org/10.1016/j.trd.2016.03.011. [3]W. Sierzchula, S. Bakker, K. Maat, B. van Wee, The influence of financial incentives and other socio-economic factors on electric vehicle adoption, Energy Policy 68(2014) 183–194, http://dx.doi.org/10.1016/j.enpol.2014.01.043. [4]S. Babrowski, H. Heinrichs, P. Jochem, W. Fichtner, Load shift potential of electric vehicles in Europe, J. Power Sources 255 (2014) 283–293, http://dx.doi.org/10. 1016/j.jpowsour.2014.01.019. [5]C. Erdmenger, H. Lehmann, K. Müschen, J. Tambke, S. Mayr, K. Kuhnhenn, A climate protection strategy for Germany—40% reduction of CO2 emissions by 2020 compared to 1990, Energy Policy 37 (1) (2009) 158–165, http://dx.doi.org/10. 1016/j.enpol.2008.07.031. [6]H. Lund, W. Kempton, Integration of renewable energy into the transport and electricity sectors through V2G, Energy Policy 36 (9) (2008) 3578–3587, http://dx. doi.org/10.1016/j.enpol.2008.06.007. [7]C. Ahn, C.-T. Li, H. Peng, Optimal decentralized charging control algorithm for electrified vehicles connected to smart grid, J. Power Sources 196 (23) (2011) 10369–10379, http://dx.doi.org/10.1016/j.jpowsour.2011.06.093. [8]M.H. Albadi, E.F. El-Saadany, A summary of demand response in electricity markets, Electr. Power Syst. Res. 78 (11)(2008) 1989–1996, http://dx.doi.org/10. 1016/j.epsr.2008.04.002. [9]F.C. Schweppe, R.D. Tabors, J.L. Kirtley, H.R. Outhred, F.H. Pickel, A.J. Cox,Homeostatic Utility Control. IEEE Transactions on Power Apparatus and Systems 3 (Vol. PAS-99), (1980), pp. 1151–1163. [10]P. Cappers, C. Goldman, D. Kathan, Demand response in U.S. electricity markets: empirical evidence, Energy 35 (4) (2010) 1526–1535, http://dx.doi.org/10.1016/j.energy.2009.06.029. [11]J. Torriti, M.G. Hassan, M. Leach, Demand response experience in Europe: policies,programmes and implementation, Energy 35 (4) (2010) 1575–1583, http://dx.doi.org/10.1016/j.energy.2009.05.021. [12]G. Strbac, Demand side management: benefits and challenges, Energy Policy 36(12) (2008) 4419–4426, http://dx.doi.org/10.1016/j.enpol.2008.09.030. [13]E. Niesten, F. Alkemade, How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects, Renew. Sustain. Energy Rev. 53 (2016) 629–638, http://dx.doi.org/10.1016/j.rser.2015.08.069. [14]P. Ringler, D. Keles, W. Fichtner, Agent-based modelling and simulation of smart electricity grids and markets – a literature review, Renew. Sustain. Energy Rev. 57(2016) 205–215, http://dx.doi.org/10.1016/j.rser.2015.12.169. [15]A.J. Roscoe, G.W. Ault, Supporting high penetrations of renewable generation via implementation of real-time electricity pricing and demand response, IET Renew. Power Gen. 4 (4) (2010) 369–382, http://dx.doi.org/10.1049/iet-rpg.2009.0212. [16]S. Gottwalt, W. Ketter, C. Block, J. Collins, C. Weinhardt, Demand side management—a simulation of household behavior under variable prices, Energy Policy 39(12) (2011) 8163–8174, http://dx.doi.org/10.1016/j.enpol.2011.10.016. [17]S.D. Ramchurn, P. Vytelingum, A. Rogers, N.R. Jennings, Agent-based control for decentralised demand side management, 10th International Conference on Autonomous Agents and Multiagent Systems, Taipei, 2011. [18]D. Dallinger, M. Wietschel, Grid integration of intermittent renewable energy sources using price-responsive plug-in electric vehicles, Renew. Sustain. Energy Rev. 16 (5) (2012) 3370–3382, http://dx.doi.org/10.1016/j.rser.2012.02.019. [19]P.J. Boait, M. Ardestani Babak, M.R. Rylatt, R.J. Snape, Managing complexity in the smart grid through a new approach to demand response, Emerg.: Complex. Organ.15 (2) (2013) 23–37. [20]C.M. Flath, J.P. Ilg, S. Gottwalt, H. Schmeck, C. Weinhardt, Improving electric vehicle charging coordination through area pricing, Transp. Sci. 48 (4) (2014) 619–634, http://dx.doi.org/10.1287/trsc.2013.0467. [21]J. García-Villalobos, I. Zamora, J.I. San Martín, F.J. Asensio, V. Aperribay, Plug-in electric vehicles in electric distribution networks: a review of smart charging approaches,Renew. Sustain. Energy Rev. 38 (2014) 717–731, http://dx.doi.org/10.1016/j.rser.2014.07.040. [22]J. Bailey, J. Axsen, Anticipating PEV buyers’ acceptance of utility controlled charging, Transp. Res. Part A: Policy Pract. 82 (2015) 29–46, http://dx.doi.org/10. [23]K.M. Tan, V.K. Ramachandaramurthy, J.Y. Yong, Integration of electric vehicles in smart grid: a review on vehicle to grid technologies and optimization techniques, Renew. Sustain. Energy Rev. 53 (2016) 720–732, http://dx.doi.org/10.1016/j.rser.2015.09.012. [24]J. Bauman, M.B. Stevens, S. Hacikyan, L. Tremblay, E. Mallia, C.J. Mendes,Residential smart-charging pilot program in Toronto: results of a utility controlled charging pilot, EVS29 Proceedings, Montréal, Canada, June 19-22, 2016. [25]C. Will, A. Schuller, Understanding user acceptance factors of electric vehicle smart charging, Transp. Res. Part C: Emerg. Technol. 71 (2016) 198–214, http://dx.doi. org/10.1016/j.trc.2016.07.006. [26]C. Weiller, A. Neely, Using electric vehicles for energy services: industry perspectives, Energy 77 (2014) 194–200, http://dx.doi.org/10.1016/j.energy.2014.06. 066. [27]F. Salah, C.M. Flath, A. Schuller, C. Will, C. Weinhardt, Morphological analysis of energy services: paving the way to quality differentiation in the power sector, Energy Policy 106 (2017) 614–624, http://dx.doi.org/10.1016/j.enpol.2017.03.024. [28]F. Kley, C. Lerch, D. Dallinger, New business models for electric cars—a holistic approach, Energy Policy 39 (6) (2011) 3392–3403, http://dx.doi.org/10.1016/j. enpol.2011.03.036. [29]Y. Li, C. Davis, Z. Lukszo, M. Weijnen, Electric vehicle charging in China’s power system: energy, economic and environmental trade-offs and policy implications, Appl. Energy 173 (2016) 535–554, http://dx.doi.org/10.1016/j.apenergy.2016.04.040. [30]C. Fernandes, P. Frías, J.M. Latorre, Impact of vehicle-to-grid on power system operation costs: the Spanish case study, Appl. Energy 96 (2012) 194–202, http:// dx.doi.org/10.1016/j.apenergy.2011.11.058. [31]C. Weiller, Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States, Energy Policy 39 (6) (2011) 3766–3778, http://dx.doi.org/10. 1016/j.enpol.2011.04.005. [32]R. Loisel, G. Pasaoglu, C. Thiel, Large-scale deployment of electric vehicles in Germany by 2030: an analysis of grid-to-vehicle and vehicle-to-grid concepts, Energy Policy 65 (2014) 432–443, http://dx.doi.org/10.1016/j.enpol.2013.10.029. [33]W.-P. Schill, C. Gerbaulet, Power system impacts of electric vehicles in Germany: charging with coal or renewables? Appl. Energy 156 (2015) 185–196, http://dx.doi.org/10.1016/j.apenergy.2015.07.012. [34]D. Dallinger, S. Gerda, M. Wietschel, Integration of intermittent renewable power supply using grid-connected vehicles–a 2030 case study for California and Germany, Appl. Energy 104 (2013) 666–682, http://dx.doi.org/10.1016/j.apenergy.2012.10.065. [35]M. Revilla, Comparison of the quality estimates in a mixed-mode and a unimode design: an experiment from the European Social Survey, Qual. Quant. 49 (3) (2015) 1219–1238, http://dx.doi.org/10.1007/s11135-014-0044-5. [36]V. Venkatesh, F.D. Davis, A theoretical extension of the technology acceptance model: four longitudinal field studies, Manag. Sci. 46 (2) (2000) 186–204, http:// dx.doi.org/10.1287/mnsc.46.2.186.11926. [37]L. Tesfatsion, Agent-based computational economics: growing economies from the bottom up, Artif. Life 8 (1) (2002) 55–82. [38]F. Sensfuß, M. Ragwitz, M. Genoese, The merit-order effect: a detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany, Energy Policy 36 (8) (2008) 3086–3094, http://dx.doi.org/10.1016/j.enpol.2008.03.035. [39]D. Möst, M. Genoese, Market power in the German wholesale electricity market, J. Energy Mark. 2 (2) (2009) 47–74. [40]P. Ringler, A. Bublitz, M. Genoese, W. Fichtner, A model-based analysis of generation adequacy in interconnected electricity markets, 11th International Conference on the European Energy Market (EEM), Krakow, Poland, 2014, pp. 1–5. [41]D. Keles, A. Bublitz, F. Zimmermann, M. Genoese, W. Fichtner, Analysis of design options for the electricity market: the German case, Appl. Energy 183 (2016) 884–901, http://dx.doi.org/10.1016/j.apenergy.2016.08.189. [42]A. Ensslen, P. Ringler, P. Jochem, D. Keles, W. Fichtner, About business model specifications of a smart charging manager to integrate electric vehicles into the German electricity market, Proceedings of the 14th IAEE European Conference, Rome, 2014. [43] A. Bublitz, D. Keles, W. Fichtner, An analysis of the decline of electricity spot prices in Europe: who is to blame? Energy Policy 107 (2017) 323–336, http://dx.doi.org/10.1016/j.enpol.2017.04.034. [44] M. Genoese, Energiewirtschaftliche Analysen des deutschen Strommarkts mit agentenbasierter Simulation, 1st ed., Nomos, Baden-Baden, 2010 237 S. [45] A. Bublitz, P. Ringler, M. Genoese, W. Fichtner, Agent-based simulation of interconnected wholesale electricity markets: an application to the German and French market area, in: B. Duval, J. van den Herik, S. Loiseau, J. Filipe (Eds.), Agents and Artificial Intelligence, vol. 8946, Springer International Publishing, 2015, pp.32–45. [46] E. Dütschke, A.-G. Paetz, Dynamic electricity pricing—which programs do consumers prefer? Energy Policy 59 (2013) 226–234, http://dx.doi.org/10.1016/j. enpol.2013.03.025. [47] G.R. Parsons, M.K. Hidrue, W. Kempton, M.P. Gardner, Willingness to pay for vehicle- to-grid (V2G) electric vehicles and their contract terms, Energy Econ. 42(2014) 313–324, http://dx.doi.org/10.1016/j.eneco.2013.12.018. [48] P. van Westendorp (Ed.), NSS-Price Sensitivity Meter: A New Approach to Study Consumer Perceptions of Prices, 1976. [49] P. Jochem, P. Landes, M. Reuter-Oppermann, W. Fichtner, Workload patterns of fast charging stations along the German Autobahn, World Electr. Veh. J. 8 (4) (2016) 926–932. [50] B. Sachs, L. Ungerer, P. Jochem, A. Ensslen, W. Fichtner, J. Globisch, P. Plötz, G. Thomas, Betreibermodell Elektro-Flotten in Stuttgart–Get e-Ready: FuEProgramm Schaufenster Elektromobilität der Bundesregierung: gemeinsamer Abschlussbericht: Laufzeit des Vorhabens vom: 01.01.2013 bis: 30.06.2016, Bosch Software Innovations GmbH, 2016. [57] infas, Mobilität in Deutschland 2008, (2008) http://www.mobilitaet-indeutschland. de/mid2008-publikationen.html . (Accessed 10 May 2016). [58] MEEDDM, Enquête nationale transports et déplacements–ENTD, Ministère de l’Environnement, de l’Energie et de la Mer, 2008 http://www.statistiques.developpement-durable.gouv.fr/transports/s/transport-voyageurs-deplacements.html . (Accessed 10 May 2016). [61] Platts, World Electric Power Plants Database, (2016) https://www.platts.com/products/world-electric-power-plants-database. [62] A. de Vita, N. Tasios, S. Evangelopoulou, N. Forsell, K. Fragiadakis, P. Fragkos, S. Frank, A. Gomez-Sanabria, M. Gusti, P. Capros, P. Havlík, L. Höglund-Isaksson, M. Kannavou, P. Karkatsoulis, M. Kesting, N. Kouvaritakis, C. Nakos, M. Obersteiner, D. Papadopoulos, L. Paroussos, A. Petropoulos, P. Purohit, P. Siskos, S. Tsani, W. Winiwarter, H.P. Witzke, M. Zampara, EU Reference Scenario 2016: Energy, Transport and GHG Emissions: Trends to 2050, Publications Office, Luxembourg, 2016 1 online resource (217). [63] ENTSOE, Consumption Data, (2017) https://www.entsoe.eu/data/data-portal/consumption/Pages/default.aspx. [64] A. Ensslen, T. Gnann, J. Globisch, P. Plötz, P. Jochem, W. Fichtner, Willingness to pay for E-mobility services: a case study from Germany, Karlsruhe Service Summit Workshop Proceedings, 25–26 February 2016, 2017. [65] A. Ensslen, A.-G. Paetz, S. Babrowski, P. Jochem, W. Fichtner, On the road to an electric mobility mass market—how can early adopters be characterized? in: D. Fornahl, M. Hülsmann (Eds.), Markets and Policy Measures in the Evolution of Electric Mobility, Springer International Publishing, Cham, 2016, pp. 21–51. [66] J. Schäuble, T. Kaschub, A. Ensslen, P. Jochem, W. Fichtner, Generating electric vehicle load proles from empirical data of three EV feets in Southwest Germany, J. Clean. Prod. (2017), http://dx.doi.org/10.1016/j.jclepro.2017.02.150. [67] G. Pasaoglu, D. Fiorello, A. Martino, G. Scarcella, A. Alemanno, C. Zubaryeva, C. Thiel, Driving and Parking Patterns of European Car Drivers: A Mobility Survey, Publications Office, Luxembourg, 2012 108 pp.. [68] P. Plötz, N. Jakobsson, F. Sprei, On the distribution of individual daily driving distances, Transp. Res. Part B: Methodol. 101 (2017) 213–227, http://dx.doi.org/ 10.1016/j.trb.2017.04.008. [70] M. Reeg, K. Nienhaus, N. Roloff, U. Pfenning, M. Deissenroth, S. Wassermann, W. Hauser, W. Weimer-Jehle, T. Kast, U. Klann, Weiterentwicklung eines agentenbasierten Simulations-modells (AMIRIS) zur Untersuchung des Akteursverhaltens bei der Marktintegration von Strom aus erneuerbaren Energien unter verschiedenen Fördermechanismen: Abschlussbericht, Deutsches Zentrum für Luft- und Raumfahrt e.V; Zentrum für Interdisziplinäre Risiko- und Innovationsforschung der Universität Stuttgart; Thomas Kast Simulation Solutions; Institut für ZukunftsEnergieSysteme gGmbH, Stuttgart, Vielhofen, Saarbrücken, 2013 http://www.dlr.de/tt/Portaldata/41/Resources/dokumente/institut/system/ publications/AMIRIS_Weiterentwicklung_Abschlussbericht.pdf . (Accessed 11 May 2016), 294 pp.. [71] H.U. Heinrichs, P. Jochem, Long-term impacts of battery electric vehicles on the German electricity system, Eur. Phys. J. Spec. Top. 225 (3) (2016) 583–593, http:// dx.doi.org/10.1140/epjst/e2015-50115-x. [72] EPEX SPOT, EPEX SPOT Auction Prices Germany: 200 day Average Prices on July 27th, 2016, (2016) https://www.epexspot.com/de/marktdaten/dayaheadauktion/ chart/auction-chart/2016-07-27/DE/1d/200d. [73] EPEX SPOT, EPEX SPOT Auction Prices France 200 day Average Prices on July 27th, 2016, (2016) https://www.epexspot.com/de/marktdaten/dayaheadauktion/chart/auction-chart/2016-07-27/FR/1d/200d. [74] P. Jochem, T. Kaschub, W. Fichtner, How to integrate electric vehicles in the future energy system? in: M. Hülsmann, D. Fornahl (Eds.), Evolutionary Paths Towards the Mobility Patterns of the Future, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 243–263. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/91543 |