Fang, Fang and Oosterlee, Kees (2008): Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions.
Preview |
PDF
MPRA_paper_9248.pdf Download (344kB) | Preview |
Abstract
We present a pricing method based on Fourier-cosine expansions for early-exercise and discretely-monitored barrier options. The method works well for exponential Levy asset price models. The error convergence is exponential for processes characterized by very smooth transitional probability density functions. The computational complexity is $O((M-1) N \log{N})$ with $N$ a (small) number of terms from the series expansion, and $M$, the number of early-exercise/monitoring dates.
Item Type: | MPRA Paper |
---|---|
Original Title: | Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions |
Language: | English |
Subjects: | G - Financial Economics > G1 - General Financial Markets > G13 - Contingent Pricing ; Futures Pricing |
Item ID: | 9248 |
Depositing User: | Fang Fang |
Date Deposited: | 29 Jun 2008 02:42 |
Last Modified: | 26 Sep 2019 21:44 |
References: | Almendral A. and Oosterlee C.W., Accurate evaluation of European and American options under the CGMY process. , SIAM J. Sci. Comput. 29: 93-117, 2007. Almendral A. and Oosterlee C. W., On American options under the Variance Gamma process, Appl. Math. Finance, 14(2):131-152, 2007. \bibitem{quad1} {\sc Andricopoulos A.D., Widdicks M., Duck P.W. and Newton D.P.,} Universal option valuation using quadrature methods, {\it J. Fin. Economics,} 67: 447-471, 2003. Andricopoulos A.D., Widdicks M., Duck P.W. and Newton D.P., Extending quadrature methods to value multi-asset and complex path dependent options,J. Fin. Economics, 2006. Barndorff-Nielsen O. E. Normal inverse Gaussian distributions and stochastic volatility modelling, Scand. J. Statist., 24:1-13, 1997. Bender C.M. and Orszag S.A., Advanced mathematical methods for scientists and engineers. McGraw-Hill, New York, 1978. Boyarchenko, S.I. and Levendorskiu, S.Z., Non-{G}aussian {M}erton-{B}lack-{S}choles theory}, Vol.~9 Advanced Series on Statist. Science & Appl. Probability., World Scient. Publ. Co. Inc., River Edge, NJ, 2002. Boyd J.P., Chebyshev & Fourier spectral methods. Springer-Verlag, Berlin, 1989. Broadie M. and Yamamoto Y., Application of the fast Gauss transform to option pricing, Management Science, 49(8): 1071-1088, 2003. Broadie M. and Yamamoto Y., A double-exponential fast Gauss transform for pricing discrete path-dependent options, Operations Research, 53(5): 764-779, 2005. Cariboni J. and Schoutens W., Pricing credit default swaps under Levy models. J. Comp. finance, 10(4) 71-91, 2008. Carr P.P., Geman H., Madan D.B. and Yor M., The fine structure of asset returns: An empirical investigation. J. of Business, 75: 305-332, 2002. Carr P.P. and Madan D.B., Option valuation using the Fast Fourier Transform. J. Comp. Finance, 2:61-73, 1999. Chourdakis K., Option pricing using the Fractional FFT. J. Comp. Finance 8(2), 2004. Chang C-C, Chung S-L and Stapleton R.C., Richardson extrapolation technique for pricing American-style options. J. Futures Markets, 27(8): 791-817, 2007. Cont R. and Tankov P.,Financial modelling with jump processes, Chapman and Hall, Boca Raton, FL, 2004. Dempster M.A.H. and Hong S.S.G., Spread option valuation and the Fast Fourier transform. Techn. Rep. WP 26/2000, the Judge Inst. Manag. Studies, Univ. Cambridge, 2000. Duffie D., Pan J. and Singleton K.J., Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68: 1343--1376, 2000. Duffie D., Filipovic D. and Schachermayer W., Affine processes and applications in finance. Ann. of Appl. Probab., 13(3): 984-1053, 2003. Evans G.A. and Webster J.R., A comparison of some methods for the evaluation of highly oscillatory integrals. J. of Comp. Applied Math. 112: 55-69, 1999. A fast algorithm for computing integrals in function spaces: financial applications. Computational Economics 7(4): 277-285, 1994. Fang, F. and Oosterlee, C.W. A novel option pricing method based on Fourier-cosine series expansions, submitted, 2008, see http://ta.twi.tudelft.nl/mf/users/oosterle/oosterlee/COS.pdf Feng L. and Linetsky V.,Pricing discretely monitored barrier options and defaultable bonds in Levy process models: a fast Hilbert transform approach, To appear in Mathematical Finance, 2008. Haug E.G., The complete guide to option pricing formulas. McGraw-Hill, 1998. Haug E.G., Barrier put-call transformations}, see http://www.smartquant.com/references/OptionPricing/option27.pdf Heston S., A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Studies, 6: 327-343, 1993. Hirsa A. and Madan D.B., Pricing American options under Variance Gamma. J. Comp. Finance, 7, 2004. Hull J.C. Options, futures and other derivatives. Prentice Hall. 4th ed., 2000. Jackson K., Jaimungal S. and Surkov V., Option pricing with regime switching Levy processes using Fourier space time-stepping. Proc. 4th IASTED Intern. Conf. Financial Engin. Applic., 92-97, 2007. Kou S. G.,A jump diffusion model for option pricing. Management Science, 48(8): 1086-1101, 2002. Lewis A. A simple option formula for general jump-diffusion and other exponential Levy processes. SSRN working paper, 2001. Available at: http//ssrn.com/abstract=282110 Lord R., Fang F., Bervoets F. and Oosterlee C.W., A fast and accurate FFT-based method for pricing early-exercise options under Levy processes. SIAM J. Sci. Comput., 30: 1678-1705, 2008. Madan D. B., Carr P. R. and Chang E. C. The Variance Gamma process and option pricing. European Finance Review, 2: 79-105, 1998. Merton R. Option pricing when underlying stock returns are discontinuous, J. Financial Economics, 3: 125-144, 1976. O'Sullivan C., Path dependent option pricing under Levy processes} EFA 2005 Moscow Meetings Paper, Available at SSRN: http://ssrn.com/abstract=673424,2005 Piessens R. and Poleunis F.,A numerical method for the integration of oscillatory functions. BIT, 11: 317-327, 1971. Raible S., Levy processes in finance: Theory, numerics and empirical facts. PhD Thesis, Inst. fuer Math. Stochastik, Albert-Ludwigs-Univ. Freiburg, 2000. Sato, K-I.,Basic results on Levy processes, In: Levy processes, 3--37, Birkhaeuser Boston, Boston MA, 2001. Schoutens, W., Levy processes in finance: Pricing financial derivatives. Wiley, 2003. Singleton K.J. and Umantsev L., Pricing coupon-bond options and swaptions in affine term structure models. Math. Finance, 12(4): 427-446, 2002. Surkov V., Parallel option pricing with Fourier space time-stepping method on graphics processing units. Preprint Univ. of Toronto, 2007. See: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1020207 Taleb N.Dynamic Hedging. John Wiley & Sons, New York, 2002. Wang I., Wan J.W. and Forsyth P.,} Robust numerical valuation of European and American options under the CGMY process. J. Comp. Finance, 10(4): 31-70, 2007. Wilmott P., Derivatives: The theory and practice of financial engineering. Wiley Frontiers in Finance Series, 1998. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/9248 |