Ahelegbey, Daniel Felix (2015): The Econometrics of Bayesian Graphical Models: A Review With Financial Application. Published in: Journal of Network Theory in Finance , Vol. 2, No. 2 (16 May 2016): pp. 1-33.
![]() |
PDF
MPRA_paper_92634.pdf Download (667kB) |
Abstract
Recent advances in empirical finance has shown that the adoption of network theory is critical to understand contagion and systemic vulnerabilities. While interdependencies among financial markets have been widely examined, only few studies review networks, however, they do not focus on the econometrics aspects. This paper presents a state-of-the-art review on the interface between statistics and econometrics in the inference and application of Bayesian graphical models. We specifically highlight the connections and possible applications of network models in financial econometrics, in the context of systemic risk.
Item Type: | MPRA Paper |
---|---|
Original Title: | The Econometrics of Bayesian Graphical Models: A Review With Financial Application |
English Title: | The Econometrics of Bayesian Graphical Models: A Review With Financial Application |
Language: | English |
Keywords: | Bayesian inference, Graphical models, Model selection, Systemic risk |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection G - Financial Economics > G0 - General > G01 - Financial Crises G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 92634 |
Depositing User: | Dr Daniel Felix Ahelegbey |
Date Deposited: | 23 Mar 2019 03:56 |
Last Modified: | 26 Sep 2019 09:49 |
References: | Acemoglu, D., Ozdaglar, A., and Tahbaz-Salehi, A. (2015). Systemic risk and stability in financial networks. American Economic Review 105, 564–608 (http://doi.org/bhxf). Acharya, V. V., and Richardson, M. (2009). Restoring Financial Stability: How to Repair a Failed System. Wiley (http://doi.org/fzbfh4). Acharya, V. V., Pedersen, L. H., Philippon, T., and Richardson, M. (2010). Measuring systemic risk.Working Paper 1002, Federal Reserve Bank of Cleveland. Adrian, T., and Brunnermeier, M. K. (2010). CoVaR. Staff Reports 348, Federal Reserve Bank of New York. Ahelegbey, D. F., and Giudici, P. (2014). Bayesian selection of systemic risk networks. Advances in Econometrics: Bayesian Model Comparison 34, 117–153 (http://doi.org/bhxg). Ahelegbey, D.F., Billio, M., and Casarin, R. (2014). Sparse graphical vector autoregression: a Bayesian approach.Working Paper, Social Science Research Network. Ahelegbey, D.F., Billio, M., and Casarin, R. (2016).Bayesian graphical models for structural vector autoregressive processes. Journal of Applied Econometrics 31, 357–386 (http://doi.org/bhxh). Akavia, U.D., Litvin, O., Kim, J., Sanchez-Garcia, F., Kotliar, D., Causton, H.C., Pochanard, P., Mozes, E., Garraway, L. A., and Pe’er, D. (2010). An integrated approach to uncover drivers of cancer. Cell 143, 1005–1017 (http://doi.org/fdbtv4). Ammann, M., and Verhofen, M. (2007). Prior performance and risk-taking of mutual fund managers: a dynamic Bayesian network approach. Journal of Behavioral Finance 8, 20–34 (http://doi.org/dq2mcq). Andersson, S. A., Madigan, D., and Perlman, M. D. (1997). A characterization of Markov equivalence classes for acyclic digraphs. Annals of Statistics 25, 505–541 (http://doi.org/dpf8zw). Asratian, A. S. (1998), Bipartite Graphs and Their Applications, Volume 131. Cambridge University Press. Banerjee, O., El Ghaoui, L., and d’Aspremont, A. (2008). Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research 9, 485–516. Barigozzi, M., and Brownlees, C. (2016).NETS:network estimation for time series. Working Paper, Social Science Research Network. Battiston, S., Delli Gatti, D., Gallegati, M., Greenwald, B., and Stiglitz, J. E. (2012). Liaisons dangereuses: increasing connectivity, risk sharing, and systemic risk. Journal of Economic Dynamics and Control 36, 1121–1141 (http://doi.org/bhxj). Bernanke, B. (2010). Causes of the recent financial and economic crisis. Testimony, Statement Before the Financial Crisis Inquiry Commission, Washington, September. Bernanke, B. (2013). Monitoring the financial system. Speech, 49th Annual Conference Bank Structure and Competition, May 10, Federal Reserve Bank of Chicago. Bernanke, B., Boivin, J., and Eliasz, P. S. (2005). Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach. Quarterly Journal of Economics 120, 387–422. Bianchi, D., Billio, M., Casarin, R., and Guidolin, M. (2014). Modeling contagion and systemic risk.Working Paper, Social Science Research Network. Billio, M., Getmansky, M., Lo, A.W., and Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of Financial Economics 104, 535–559 (http://doi.org/bhxm). Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Volume 4. Springer. Bisias, D., Flood, M. D., Lo, A. W., and Valavanis, S. (2012). A survey of systemic risk analytics.Working Paper 1, US Department of Treasury, Office of Financial Research. Brownlees, C. T., and Engle, R. (2011). Volatility, correlation and tails for systemic risk measurement. Technical Report, New York University. Brunnermeier, M. K., and Oehmke, M. (2012). Bubbles, financial crises, and systemic risk. Working Paper 18398, NBER. Brunnermeier, M. K., and Pedersen, L. H. (2009). Market liquidity and funding liquidity. Review of Financial Studies 22, 2201–2238 (http://doi.org/drd3sm). Bunea, F., She, Y., and Wegkamp, M. H. (2011). Optimal selection of reduced rank estimators of high-dimensional matrices. Annals of Statistics 39, 1282–1309 (http://doi.org/d8cg8b). Carvalho, C. M., and Scott, J. G. (2009). Objective Bayesian model selection in Gaussian graphical models. Biometrika 96, 497–512 (http://doi.org/bkd7v2). Carvalho, C. M., andWest, M. (2007). Dynamic matrix-variate graphical models. Bayesian Analysis 2, 69–98 (http://doi.org/cqdc38). Carvalho, C. M., Massam, H., and West, M. (2007). Simulation of hyper-inverse Wishart distributions in graphical models. Biometrika 94, 647–659 (http://doi.org/bd9tpp). Chen, K., Dong, H., and Chan, K.-S. (2013). Reduced rank regression via adaptive nuclear norm penalization. Biometrika 100, 901–920 (http://doi.org/bhxp). Chen, L., and Huang, J. Z. (2012).Sparse reduced-rank regression for simultaneous dimension reduction and variable selection. Journal of the American Statistical Association 107, 1533–1545 (http://doi.org/bhxq). Chickering, D. M., Heckerman, D., and Meek, C. (2004). Large-sample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research 5, 1287–1330. Choi, M. J., Tan, V. Y., Anandkumar, A., and Willsky, A. S. (2011). Learning latent tree graphical models. Journal of Machine Learning Research 12, 1771–1812. Consonni, G., and Rocca, L. L. (2012). Objective Bayes factors for Gaussian directed acyclic graphical models. Scandinavian Journal of Statistics 39, 743–756 (http://doi.org/bhxr). Cont, R., Santos, E., and Moussa, A. (2013).Network structure and systemic risk in banking systems. In Handbook of Systemic Risk, pp. 327–368. Cambridge University Press. Corander, J., and Villani, M. (2006). A Bayesian approach to modelling graphical vector autoregressions. Journal of Time Series Analysis 27(1), 141–156 (http://doi.org/cjrfgt). Dahlhaus, R., and Eichler, M. (2003). Causality and graphical models for time series. In Highly Structured Stochastic Systems, Green, P. J., Hjort, N., and Richardson, S. (eds). Oxford University Press. DasGupta, B., and Kaligounder, L. (2014). On global stability of financial networks. Journal of Complex Networks 2, 313–354 (http://doi.org/bhxs). Dawid, A. (2003). An object-oriented Bayesian network for estimating mutation rates. In Proceedings of the Ninth InternationalWorkshop on Artificial Intelligence and Statistics, pp. 3–6. Society for Artificial Intelligence and Statistics. De Bandt, O., and Hartmann, P. (2000). Systemic risk: a survey. Working Paper, European Central Bank. Demiralp, S., and Hoover, K. D. (2003). Searching for the causal structure of a vector autoregression. Oxford Bulletin of Economics and Statistics 65, 745–767 (http://doi.org/d4qgmm). Diebold, F., and Yilmaz, K. (2014). On the network topology of variance decompositions: measuring the connectedness of financial firms. Journal of Econometrics 182, 119–134 (http://doi.org/v9t). Diebold, F., and Yilmaz, K. (2015). Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring. Oxford University Press (http://doi.org/bhxv). Diks, C., and Panchenko, V. (2005). A note on the Hiemstra–Jones test for Granger noncausality. Studies in Nonlinear Dynamics & Econometrics 9, 1–9 (http://doi.org/dsnsvf). Dornbusch, R., Park, Y. C., and Claessens, S. (2000). Contagion: understanding how it spreads. World Bank Research Observer 15, 177–197 (http://doi.org/bhxw). Drton, M., and Perlman, M. D. (2007). Multiple testing and error control in Gaussian graphical model selection. Statistical Science 22, 430–449 (http://doi.org/b8sskz). Dungey, M., Fry, R., González-Hermosillo, B., and Martin, V. L. (2005). Empirical modelling of contagion: a review of methodologies. Quantitative Finance 5, 9–24 (http://doi.org/dgcnpf). Dungey, M., Luciani, M., and Veredas, D. (2012). Ranking systemically important financial institutions. Discussion Paper, Tinbergen Institute. Eichler,M. (2007).Granger causality and path diagrams formultivariate time series. Journal of Econometrics 137, 334–353 (http://doi.org/dttdkh). European Central Bank (ECB) (2010). Financial networks and financial stability. Financial Stability Review 2010, 155–160. Fama, E.F., and French, K. R. (2004).The capital asset pricing model: theory and evidence. Journal of Economic Perspectives 18, 25–46 (http://doi.org/bq8s9c). Fan, J., and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics 32, 928–961 (http://doi.org/fp8q45). Financial Crisis Inquiry Commission (2011).The financial crisis inquiry report. Final Report of the National Commission on the Causes of the Financial and Economic Crisis in the United States, Public Affairs. Frank, O., and Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association 81, 832–842 (http://doi.org/bhxz). Friedman, N., and Koller, D. (2003). Being Bayesian about network structure. Journal of Machine Learning 50, 95–125 (http://doi.org/dg8mjh). Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using Bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (http://doi.org/dzt3cq). Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical LASSO. Biostatistics 9, 432–441 (http://doi.org/db7svr). Gai, P., Haldane, A., and Kapadia, S. (2011). Complexity, concentration and contagion. Journal of Monetary Economics 58, 453–470 (http://doi.org/bkw8vg). Geiger, D., and Heckerman, D. (2002).Parameter priors for directed acyclic graphical models and the characterization of several probability distributions. Annals of Statistics 30, 1412–1440 (http://doi.org/fkxnrp). Georg,C.-P.(2013).The effect of the interbank network structure on contagion and common shocks. Journal of Banking & Finance 37, 2216–2228 (http://doi.org/bhx3). Ghahramani, Z. (1998). Learning dynamic Bayesian networks. In Adaptive Processing of Sequences and Data Structures, pp. 168–197. Springer (http://doi.org/chctf5). Gillispie, S. B., and Perlman, M. D. (2001). Enumerating Markov equivalence classes of acyclic digraph models. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 171–177. Morgan Kaufmann. Giudici, P., and Green, P. J. (1999). Decomposable graphical Gaussian model determination. Biometrika 86, 785–801 (http://doi.org/bp2wbn). Goldenberg, A., Zheng, A. X., Fienberg, S. E., and Airoldi, E. M. (2010). A survey of statistical network models. Foundations and Trends in Machine Learning 2, 129–233 (http://doi.org/fkz6s4). Granger, C.W. J. (1969). Investigating causal relations by econometric models and crossspectral methods. Econometrica 37, 424–438 (http://doi.org/cr52sb). Grzegorczyk, M. (2010). An introduction to Gaussian Bayesian networks. In Systems Biology in Drug Discovery and Development, Yan, Q. (ed.). Methods in Molecular Biology, Volume 662. Springer (http://doi.org/cs3kgs). Grzegorczyk, M., Husmeier, D., and Rahnenführer, J. (2011). Modelling non-stationary dynamic gene regulatory processes with the BGM model. Computational Statistics 26, 199–218 (http://doi.org/cjcgzn). Handcock, M. S., Raftery, A. E., and Tantrum, J. M. (2007). Model-based clustering for social networks. Journal of the Royal Statistical Society A170, 301–354 (http://doi.org/fnm3cz). Hao, D., Ren, C., and Li, C. (2012). Revisiting the variation of clustering coefficient of biological networks suggests new modular structure.BMC Systems Biology 6(34) (http://doi.org/bhx4). Hautsch, N., Schaumburg, J., and Schienle, M. (2015). Financial network systemic risk contributions. Review of Finance 19, 685–738 (http://doi.org/bhx5). Heckerman, D., and Geiger, D. (1994). Learning Gaussian networks. In Uncertainty in Artificial Intelligence, pp. 235–243. Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning 20, 197–243 (http://doi.org/drgw8b). Hensman, J., Lawrence, N. D., and Rattray, M. (2013). Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinformatics 14, 1–12 (http://doi.org/bhx6). Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association 97, 1090–1098 (http://doi.org/dqmnzj). Höfling, H., andTibshirani, R.(2009).Estimation of sparse binary pairwise Markov networks using pseudo-likelihoods. Journal of Machine Learning Research 10, 883–906. Holland, P.W., and Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association 76, 33–50 (http://doi.org/bhx7). Hoover, K. D. (2001). Causality in Macroeconomics. Cambridge University Press (http://doi.org/fh6kdz). Huang, X., Zhou, H., and Zhu, H. (2012). Systemic risk contributions. Journal of Financial Services Research 42, 55–83 (http://doi.org/frpbnf). Jackson, M. O. (2014). Networks in the understanding of economic behaviors. Journal of Economic Perspectives 28, 3–22 (http://doi.org/bhx8). Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C., andWest, M. (2005). Experiments in stochastic computation for high-dimensional graphical models. Statistical Science 20, 388–400 (http://doi.org/dmm6v6). Kilian, L. (2013). Structural vector autoregressions. In Handbook of Research Methods and Applications in Empirical Macroeconomics, pp. 515–554. Edward Elgar, Cheltenham (http://doi.org/bhx9). Kolaczyk, E.D. (2009). Statistical Analysis of Network Data: Methods and Models. Springer (http://doi.org/cz9zfh). Kolaczyk, E. D., and Csárdi, G. (2014). Statistical Analysis of Network Data with R, Volume 65. Springer (http://doi.org/bhzb). Koller, D., and Friedman, N. (2009), Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge, MA. Kritzman, M., Li,Y., Page, S., and Rigobon, R. (2011). Principal components as a measure of systemic risk. Journal of Portfolio Management 37, 112 (http://doi.org/c6b52c). Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47, 498–519 (http://doi.org/b2w8tp). Lebre, S., Becq, J., Devaux, F., Stumpf,M.P., and Lelandais, G. (2010). Statistical inference of the time-varying structure of gene regulation networks.BMC Systems Biology 4(130) (http://doi.org/cpbbd3). Lenkoski, A., and Dobra, A. (2011). Computational aspects related to inference in Gaussian graphical models with the G-Wishart prior. Journal of Computational and Graphical Statistics 20, 140–157 (http://doi.org/dj652w). Lian, H., Feng, S., and Zhao, K. (2015). Parametric and semiparametric reduced-rank regression with flexible sparsity. Journal of Multivariate Analysis 136, 163–174 (http://doi.org/bhzc). Liu, Q., and Ihler, A. T. (2012). Distributed parameter estimation via pseudo-likelihood. In Proceedings of the 29th International Conference on Machine Learning (ICML-12), pp. 1487–1494. International Machine Learning Society. Liu,Y., and Willsky, A. (2013). Learning Gaussian graphical models with observed or latent FVSs. In Advances in Neural Information Processing Systems, pp. 1833–1841. Neural Information Processing Systems Foundation. Madigan, D., andYork, J. (1995). Bayesian graphical models for discrete data. International Statistical Review 63, 215–232 (http://doi.org/bjp899). Markowitz, H. (1952). Portfolio selection. Journal of Finance 7, 77–91 (http://doi.org/bhzd). Meinshausen, N., and Bühlmann, P. (2006).High dimensional graphs and variable selection with the lasso. Annals of Statistics 34, 1436–1462 (http://doi.org/fwt5kt). Meng, Z.,Wei, D., and Wiesel, A. (2013). Distributed learning of Gaussian graphical models via marginal likelihoods. In Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, pp. 39–47. Society for Artificial Intelligence and Statistics. Miyamura, M., and Kano, Y. (2006). Robust Gaussian graphical modeling. Journal of Multivariate Analysis 97, 1525–1550 (http://doi.org/fq4dz4). Moneta, A. (2008). Graphical causal models andVaRs: an empirical assessment of the real business cycles hypothesis. Empirical Economics 35, 275–300 (http://doi.org/bx7wkz). Murphy, K.P. (2012).Machine Learning:A Probabilistic Perspective.MIT Press, Cambridge, MA. Neapolitan, R. E. (2004). Learning Bayesian Networks, Volume 38. Prentice Hall, Upper Saddle River, NJ. Nowicki, K., and Snijders, T. A. (2001). Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association 96, 1077–1087 (http://doi.org/bchhqk). Pearl, J. (2000). Causality: Models, Reasoning and Inference. Cambridge University Press. Pericoli, M., and Sbracia, M. (2003). A primer on financial contagion. Journal of Economic Surveys 17, 571–608 (http://doi.org/chhw3z). Ravasz, E. (2009). Detecting hierarchical modularity in biological networks. In Computational Systems Biology, pp. 145–160. Springer. Ravikumar, P., Wainwright, M. J., and Lafferty, J. D. (2010). High-dimensional Ising model selection using l1-regularized logistic regression. Annals of Statistics 38, 1287–1319 (http://doi.org/fdq6hd). Robinson, J.W., and Hartemink, A. J. (2009). Non-stationary dynamic Bayesian networks. In Advances in Neural Information Processing Systems (NIPS), Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L. (eds), Volume 21, pp. 1369–1376. Neural Information Processing Systems Foundation. Roll, R. (1977). A critique of the asset pricing theory’s tests part I: on past and potential testability of the theory. Journal of Financial Economics 4, 129–176 (http://doi.org/ccmg77). Ross, S.A. (1976).The arbitrage theory of capital asset pricing.Journal of Economic Theory 13, 341–360 (http://doi.org/crw95p). Roverato, A. (2002). Hyper inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models. Scandinavian Journal of Statistics 29, 391–411 (http://doi.org/dg5j64). Scott, J. G., and Carvalho, C.M. (2008). Feature-inclusion stochastic search for Gaussian graphical models. Journal of Computational and Graphical Statistics 17, 790–808 (http://doi.org/bndsk4). Segoviano, M. A., and Goodhart, C. A. (2009). Banking stability measures. Working Paper 09/4, International Monetary Fund, Washington, DC. Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology 46, 561–584. Sharpe,W. F. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk. Journal of Finance 19, 425–442 (http://doi.org/bhzm). Sharpe,W. F. (1992). Asset allocation: management style and performance measurement. Journal of Portfolio Management 18, 7–19 (http://doi.org/fjqs2p). Shenoy, C., and Shenoy, P. P. (2000). Bayesian network models of portfolio risk and return. Computational Finance 1999, 87–106. Snijders, T. A. (2011). Statistical models for social networks. Annual Review of Sociology 37, 131–153 (http://doi.org/bc9qm2). Spirtes, P., Glymour, C., and Scheines, R. (2000), Causation, Prediction, and Search. MIT Press, Cambridge, MA. Swanson, N. R., and Granger, C. W. J. (1997). Impulse response functions based on a causal approach to residual orthogonalization in vector autoregressions. Journal of the American Statistical Association 92, 357–367 (http://doi.org/bhzn). Tan, K. M., London, P., Mohan, K., Lee, S.-I., Fazel, M., and Witten, D. (2014). Learning graphical models with hubs. Journal of Machine Learning Research 15, 3297–3331. Tang, C., Dungey, M. M., Martin, M. V., González-Hermosillo, M. B., and Fry, M. R. (2010). Are financial crises alike? Working Paper 10-14, International Monetary Fund. Teramoto, R., Saito, C., and Funahashi, S.-I. (2014). Estimating causal effects with a non-paranormal method for the design of efficient intervention experiments. BMC Bioinformatics 15, 1–14 (http://doi.org/bhzp). Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B58, 267–288. Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning 65, 31–78 (http://doi.org/cvb5mq). Verma, T. S., and Pearl, J. (1991). Equivalence and synthesis of causal models. In Uncertainty in Artificial Intelligence, Volume 6, pp. 220–227. Elsevier Science Publishers, Cambridge, MA. Vogel,D., and Fried, R.(2011). Elliptical graphical modelling.Biometrika 98, 935–951 (http://doi.org/d3423x). Wainwright, M.J., and Jordan, M.I.(2008).Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning 1, 1–305 (http://doi.org/bpnwrm). Wang, H., and Li, S. Z. (2012). Efficient Gaussian graphical model determination under G-Wishart prior distributions. Electronic Journal of Statistics 6, 168–198 (http://doi.org/bhzq). Wang, Y. J., and Wong, G.Y. (1987). Stochastic blockmodels for directed graphs. Journal of the American Statistical Association 82, 8–19 (http://doi.org/bhzr). Wright, L. (2007).Bayesian networks and probabilistic inference in forensic science. Journal of the Royal Statistical Society A170, 1187–1187 (http://doi.org/dhhnf6). Yuan, M., and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society B68, 49–67 (http://doi.org/fvntrn). Zha, H., He, X., Ding, C., Simon, H., and Gu, M. (2001). Bipartite graph partitioning and data clustering. In Proceedings of the 10th International Conference on Information and Knowledge Management, pp. 25–32. Association for Computing Machinery (http://doi.org/b2mqg5). Zhao, T., Roeder, K., and Liu, H. (2012). Smooth-projected neighborhood pursuit for high-dimensional nonparanormal graph estimation. In Advances in Neural Information Processing Systems, pp. 162–170. Zou, C., and Feng, J. (2009). Granger causality vs. dynamic Bayesian network inference: a comparative study. BMC Bioinformatics 10(122), 1–17 (http://doi.org/cjfvm5). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/92634 |