Marañón-Ledesma, Hector and Tomasgard, Asgeir (2019): Long-Term Electricity Investments Accounting for Demand and Supply Side Flexibility.
PDF
MPRA_paper_92957.pdf Download (2MB) |
Abstract
Short-term Electricity Demand Response (DR) is an emerging technology in Europe's Electricity markets that will introduce a new degree of exibility. The objective of this work is to analyze to what extent the untapped DR potential can facilitate an optimal transition to an European low emission power system. The beneffits of DR consists of a reduction in peak load consumption, which leads to reduction in capacity investments, production and consumption savings, reduced congestion phases, reliable integration of intermittent renewable resources and supply and demand exibility. The capabilities of DR are studied in the European Model for Power Investment with (High Shares of) Renewable Energy (EMPIRE), which is an electricity sector model with a time span of 30 years ending in 2050. The model is two-stage stochastic that includes uncertainty at the operational level and energy economics dynamics at a strategic level. The main contribution of this article is designing the investment-operation DR module within the EMPIRE framework. It models several classes of shiftable and curtailable loads in residential, commercial and industrial sectors, including exibility periods, operational costs and endogenous DR investments, for 31 European countries. The results show that DR capacity substitutes partially exible supply side capacity from peak gas plants and battery storage, in addition to enabling more solar PV production.
Item Type: | MPRA Paper |
---|---|
Original Title: | Long-Term Electricity Investments Accounting for Demand and Supply Side Flexibility |
Language: | English |
Keywords: | Demand Response; Flexibility; Linear Stochastic Optimization; Demand Side Management; European Power System; Energy Economics |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities > L90 - General L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities > L97 - Utilities: General |
Item ID: | 92957 |
Depositing User: | Mr Hector Marañón-Ledesma |
Date Deposited: | 27 Mar 2019 14:16 |
Last Modified: | 26 Sep 2019 21:04 |
References: | M. H. Albadi and E. F. El-Saadany. A summary of demand response in electricity markets. Electric Power Systems Research, 78(11):1989{1996, November 2008. ISSN 0378-7796. doi: 10.1016/j.epsr.2008.04.002. URL http://www.sciencedirect.com/ science/article/pii/S0378779608001272. Phil Baker. Resource adequacy, regionalisation and demand response. Technical report, The Regulatory Assistance Project (RAP), 2015. URL http://www.raponline.org/knowledge-center/ resource-adequacy-regionalisation-demand-response/. Leire Bastida, Jed J. Cohen, Andrea Kollmann, Ana Moya, and Johannes Reichl. Exploring the role of ICT on householdbehavioural energy efficiency to mitigate global warming. Renewable and Sustainable Energy Reviews, 103:455 { 462, 2019. ISSN 1364-0321. doi: https://doi.org/10.1016/j.rser.2019.01.004. URL http://www.sciencedirect.com/science/article/ pii/S1364032119300073. Tobias Bossmann and Eike Johannes Eser. Model-based assessment of demand-response measures A comprehensive literature review. Renewable and Sustainable Energy Reviews, 57:1637{1656, May 2016. ISSN 1364-0321. doi: 10.1016/j.rser.2015.12. 031. URL http://www.sciencedirect.com/science/article/pii/S1364032115014148. Lluc Canals Casals, Mattia Barbero, and Cristina Corchero. Reused second life batteries for aggregated demand response services. Journal of Cleaner Production, 212:99 { 108, 2019. ISSN 0959-6526. doi: https://doi.org/10.1016/j.jclepro.2018. 12.005. URL http://www.sciencedirect.com/science/article/pii/S0959652618337077. Open Power System Data. Data package time series. Technical report, Version 2017-07-09. (Primary data from various sources, for a complete list see URL), 2017. URL https://data.open-power-system-data.org/time_series/2017-07-09/. C. De Jonghe, B. F. Hobbs, and R. Belmans. Optimal generation mix with short-term demand response and wind penetration. IEEE Transactions on Power Systems, 27(2):830{839, May 2012. ISSN 0885-8950. doi: 10.1109/TPWRS.2011.2174257. ENTSO-e. Policy paper on market design for demand side response. https://www.entsoe.eu/publications/position-papers/ position-papers-archive/Pages/Position%20Papers/market-design-for-demand-side-response.aspx, 2015. ENTSO-e. Scenario outlook and adequacy forecast 2015. Technical report, ENTSO-e, 2015. Ana García-Garre, Antonio Gabaldón, Carlos Alvarez-Bel, Maria Del Carmen Ruiz-Abellón, and Antonio Guillamón. Integration of demand response and photovoltaic resources in residential segments. Sustainability, 10(9), 2018. ISSN 2071-1050. doi: 10.3390/su10093030. URL http://www.mdpi.com/2071-1050/10/9/3030. Hans Christian Gils. Assessment of the theoretical demand response potential in Europe. Energy, 67:1{18, 2014. ISSN 0360- 5442. doi: 10.1016/j.energy.2014.02.019. URL http://www.sciencedirect.com/science/article/pii/S0360544214001534. Hans Christian Gils. Balancing of Intermittent Renewable Power Generation by Demand Response and Thermal Energy Storage. Thesis dissertation, University of Stuttgart and German Aerospace Center, 2015. URL http://elib.dlr.de/101272/. Hans Christian Gils. Economic potential for future demand response in Germany { modeling approach and case study. Applied Energy, 162:401{415, 2016. ISSN 0306-2619. doi: 10.1016/j.apenergy.2015.10.083. URL http://www.sciencedirect.com/science/article/pii/S0306261915013100. Lisa Goransson, Joel Goop, Thomas Unger, Mikael Odenberger, and Filip Johnsson. Linkages between demand-side management and congestion in the European electricity transmission system. Energy, 69:860 { 872, 2014. ISSN 0360-5442. doi: https: //doi.org/10.1016/j.energy.2014.03.083. URL http://www.sciencedirect.com/science/article/pii/S0360544214003478. Matthias Huber, Desislava Dimkova, and Thomas Hamacher. Integration of wind and solar power in europe: Assessment ofexibility requirements. Energy, 69:236 { 246, 2014. ISSN 0360-5442. doi: https://doi.org/10.1016/j.energy.2014.02.109. URL http://www.sciencedirect.com/science/article/pii/S0360544214002680. Jose Iria, Filipe Soares, and Manuel Matos. Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets. Applied Energy, 238:1361 { 1372, 2019. ISSN 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2019.01. 191. URL http://www.sciencedirect.com/science/article/pii/S0306261919301928. Cosima Jägemann, Michaela Frsch, Simeon Hagspiel, and Stephan Nagl. Decarbonizing Europe's power sector by 2050 { analyzing the economic implications of alternative decarbonization pathways. Energy Economics, 40:622 { 636, 2013. ISSN 0140-9883. doi: https://doi.org/10.1016/j.eneco.2013.08.019. URL http://www.sciencedirect.com/science/article/pii/ S0140988313001928. Alexander Kies, Bruno U. Schyska, and Lueder Von Bremen. The demand side management potential to balance a highly renewable European power system. Energies, 9(11), 2016. ISSN 1996-1073. doi: 10.3390/en9110955. URL http://www.mdpi.com/1996-1073/9/11/955. Timo Lohmann and Steffen Rebennack. Tailored Benders decomposition for a long-term power expansion model with short-term demand response. Management Science, 2016. ISSN 0025-1909. doi: 10.1287/mnsc.2015.2420. URL http://pubsonline.informs.org/doi/abs/10.1287/mnsc.2015.2420. Peter D. Lund, Juuso Lindgren, Jani Mikkola, and Jyri Salpakari. Review of energy system exibility measures to enable high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews, 45:785 { 807, 2015. ISSN 1364-0321. doi: https://doi.org/10.1016/j.rser.2015.01.057. URL http://www.sciencedirect.com/science/article/pii/ S1364032115000672. Eoghan McKenna, Sarah Higginson, Philipp Grunewald, and Sarah J. Darby. Simulating residential demand response: Improving socio-technical assumptions in activity-based models of energy demand. Energy Efficiency, 11(7):1583{1597, Oct 2018. ISSN 1570-6478. doi: 10.1007/s12053-017-9525-4. URL https://doi.org/10.1007/s12053-017-9525-4. F.L. Muller and B. Jansen. Large-scale demonstration of precise demand response provided by residential heat pumps. Applied Energy, 239:836 { 845, 2019. ISSN 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2019.01.202. URL http://www.sciencedirect.com/science/article/pii/S0306261919302156. Theresa Müller and Dominik Möst. Demand response potential: Available when needed? Energy Policy, 115:181 { 198, 2018. ISSN 0301-4215. doi: https://doi.org/10.1016/j.enpol.2017.12.025. URL http://www.sciencedirect.com/science/article/pii/S0301421517308509. Niamh O'Connell, Pierre Pinson, Henrik Madsen, and Mark O'Malley. Benefits and challenges of electrical demand response: A critical review. Renewable and Sustainable Energy Reviews, 39:686 { 699, 2014. ISSN 1364-0321. doi: https://doi.org/10.1016/j.rser.2014.07.098. URL http://www.sciencedirect.com/science/article/pii/S1364032114005504. Stig Ødegaard Ottesen and Asgeir Tomasgard. A stochastic model for scheduling energy exibility in buildings. Energy, 88: 364 { 376, 2015. ISSN 0360-5442. doi: https://doi.org/10.1016/j.energy.2015.05.049. URL http://www.sciencedirect.com/science/article/pii/S0360544215006301. Stig Ødegaard Ottesen, Asgeir Tomasgard, and Stein-Erik Fleten. Prosumer bidding and scheduling in electricity markets. Energy, 94:828{843, 2016. ISSN 0360-5442. doi: 10.1016/j.energy.2015.11.047. URL http://www.sciencedirect.com/science/article/pii/S0360544215015972. Stig Ødegaard Ottesen, Asgeir Tomasgard, and Stein-Erik Fleten. Multi market bidding strategies for demand side flexibility aggregators in electricity markets. Energy, 149:120 { 134, 2018. ISSN 0360-5442. doi: https://doi.org/10.1016/j.energy. 2018.01.187. URL http://www.sciencedirect.com/science/article/pii/S0360544218302159. D. Papadaskalopoulos, R. Moreira, G. Strbac, D. Pudjianto, P. Djapic, F. Teng, and M. Papapetrou. Quantifying the potential economic benefits of flexible industrial demand in the European power system. IEEE Transactions on Industrial Informatics, 14(11):5123{5132, Nov 2018. ISSN 1551-3203. doi: 10.1109/TII.2018.2811734. Stefan Pfenninger and Iain Stafell. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy, 114:1251 { 1265, 2016. ISSN 0360-5442. doi: https://doi.org/10.1016/j.energy.2016.08.060. URL http://www.sciencedirect.com/science/article/pii/S0360544216311744. Renewables Ninja. Version 1.1. Technical report, Version 1.1. (Source data MERRA-2, for a complete list see URL), 2017. URL https://www.renewables.ninja. Javier Rodríguez-García, Carlos Alvarez-Bel, Jose-Francisco Carbonell-Carretero, Guillermo Escrivá-Escrivá, and Carmen Calpe-Esteve. Design and validation of a methodology for standardizing prequalification of industrial demand response resources. Electric Power Systems Research, 164:220 { 229, 2018. ISSN 0378-7796. doi: https://doi.org/10.1016/j.epsr.2018. 08.003. URL http://www.sciencedirect.com/science/article/pii/S0378779618302463. J. Sáez-Gallego, M. Kohansal, A. Sadeghi-Mobarakeh, and J. M. Morales. Optimal price-energy demand bids for aggregate price-responsive loads. IEEE Transactions on Smart Grid, 9(5):5005{5013, Sep. 2018. ISSN 1949-3053. doi: 10.1109/TSG.2017.2677974. Wolf-Peter Schill and Alexander Zerrahn. Long-run power storage requirements for high shares of renewables: Results and sensitivities. Renewable and Sustainable Energy Reviews, 83:156 { 171, 2018. ISSN 1364-0321. doi: https://doi.org/10.1016/j.rser.2017.05.205. URL http://www.sciencedirect.com/science/article/pii/S1364032117308419. Smart Energy Demand Coalition SEDC. Mapping demand response in europe today 2015. Technical report, SEDC Smart Energy Demand Coalition, 2015. SEDC Smart Energy Demand Coalition. Explicit demand response in Europe. Mapping the markets 2017. Technical report, SEDC Smart Energy Demand Coalition, 2017. Pernille Seljom and Asgeir Tomasgard. Short-term uncertainty in long-term energy system models a case study of wind power in Denmark. Energy Economics, 49: 157-167, 2015. ISSN 0140-9883. doi: http://dx.doi.org/10.1016/j.eneco.2015.02.004. URL http://www.sciencedirect.com/science/article/pii/S0140988315000419. Pernille Seljom, Karen Byskov Lindberg, Asgeir Tomasgard, Gerard Doorman, and Igor Sartori. The impact of zero energy buildings on the Scandinavian energy system. Energy, 118: 284-296, 2017. ISSN 0360-5442. doi: https://doi.org/10.1016/j.energy.2016.12.008. URL http://www.sciencedirect.com/science/article/pii/S0360544216318138. Christian Skar, Asgeir Tomasgard, G. Doorman, and Gerardo Prez-Valds. A multi-horizon stochastic programming model for the european power system. CenSES Working Paper No. 2/16. Norwegian University of Science and Technology (NTNU), 2016. Aman Srivastava, Steven Van Passel, and Erik Laes. Assessing the success of electricity demand response programs: A metaanalysis. Energy Research & Social Science, 40:110 { 117, 2018. ISSN 2214-6296. doi: https://doi.org/10.1016/j.erss.2017.12.005. URL http://www.sciencedirect.com/science/article/pii/S2214629617304516. Iain Stafell and Stefan Pfenninger. Using bias-corrected reanalysis to simulate current and future wind power output. Energy, 114:1224 { 1239, 2016. ISSN 0360-5442. doi: https://doi.org/10.1016/j.energy.2016.08.068. URL http://www.sciencedirect.com/science/article/pii/S0360544216311811. Jacopo Torriti, Mohamed G. Hassan, and Matthew Leach. Demand response experience in Europe: Policies, programmes and implementation. Energy, 35(4):1575{1583, April 2010. ISSN 0360-5442. doi: 10.1016/j.energy.2009.05.021. URL http://www.sciencedirect.com/science/article/pii/S0360544209002060. Andreas Ulbig and Gran Andersson. Analyzing operational flexibility of electric power systems. International Journal of Electrical Power & Energy Systems, 72:155 { 164, 2015. ISSN 0142-0615. doi: https://doi.org/10.1016/j.ijepes.2015.02.028. URL http://www.sciencedirect.com/science/article/pii/S0142061515001118. The Special Issue for 18th Power Systems Computation Conference. Mercedes Vallés, Antonio Bello, Javier Reneses, and Pablo Frías. Probabilistic characterization of electricity consumer responsiveness to economic incentives. Applied Energy, 216:296 { 310, 2018. ISSN 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2018.02.058. URL http://www.sciencedirect.com/science/article/pii/S0306261918301843. Frauke Wiese, Ingmar Schlecht, Wolf-Dieter Bunke, Clemens Gerbaulet, Lion Hirth, Martin Jahn, Friedrich Kunz, Casimir Lorenz, Jonathan Mhlenpfordt, Juliane Reimann, and Wolf-Peter Schill. Open Power System Data { frictionless data for electricity system modelling. Applied Energy, 236:401 { 409, 2019. ISSN 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2018.11.097 URL http://www.sciencedirect.com/science/article/pii/S0306261918318130. Alexander Zerrahn and Wolf-Peter Schill. On the representation of demand-side management in power system models. Energy, 84:840 { 845, 2015. ISSN 0360-5442. doi: https://doi.org/10.1016/j.energy.2015.03.037. URL http://www.sciencedirect.com/science/article/pii/S036054421500331X. Alexander Zerrahn and Wolf-Peter Schill. Long-run power storage requirements for high shares of renewables: review and a new model. Renew-able and Sustainable Energy Reviews, 79:1518 { 1534, 2017. ISSN 1364-0321. doi: https://doi.org/10.1016/j.rser.2016.11.098. URL http://www.sciencedirect.com/science/article/pii/S1364032116308619 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/92957 |