Chasco, Coro and García, Isabel and Vicéns, José (2007): Modeling spatial variations in household disposable income with Geographically Weighted Regression.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_9581.pdf Download (1MB) | Preview |
Abstract
The purpose of this paper is to analyze the spatially varying impacts of some classical regressors on per capita household income in Spanish provinces. The authors model this distribution following both a traditional global regression and a local analysis with Geographically Weighted Regression (GWR). Several specifications are compared, being the adaptive bisquare weighting function the more efficient in terms of goodness-of-fit. We test for global and local spatial instability using some F-tests and other statistical measures. We find some evidence of spatial instability in the distribution of this variable in relation to some explanatory variables, which cannot be totally solved by spatial dependence specifications. GWR has revealed as a better specification to model per capita household income. It highlights some facets of the relationship completely hidden in the global results and forces us to ask about questions we would otherwise not have asked. Moreover, the application of GWR can also be of help to further exercises of micro-data spatial prediction.
Item Type: | MPRA Paper |
---|---|
Institution: | Universidad Autónoma de Madrid |
Original Title: | Modeling spatial variations in household disposable income with Geographically Weighted Regression |
Language: | English |
Keywords: | Geographically Weighted Regression (GWR); spatial non-stationarity; spatial prediction; income; Spanish provinces |
Subjects: | R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R12 - Size and Spatial Distributions of Regional Economic Activity C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C21 - Cross-Sectional Models ; Spatial Models ; Treatment Effect Models ; Quantile Regressions |
Item ID: | 9581 |
Depositing User: | Coro Chasco |
Date Deposited: | 16 Jul 2008 00:29 |
Last Modified: | 29 Sep 2019 04:30 |
References: | Alañón A (2001) La renta regional en España: análisis y estimación de sus determinantes. Doctoral Thesis, Universidad Complutense de Madrid. Alcaide J, P Alcaide (2005), Balance Económico Regional (Autonomías y Provincias). Años 1995 a 2003, Fundación de las Cajas de Ahorros (FUNCAS), Dpto. de Estadística Regional. Anselin L (1988) Spatial econometrics: methods and models, Kluwer Academic Publishers, Dordrecht. Anselin L (1990), Spatial dependence and spatial structural instability in applied regression analysis. Journal of Regional Science 30, 185-207. Anselin L (1995) Space Stat Version 1.80: Users’ Guide, Morgantown, WV, USA: Regional Research Institute, West Virginia University. Bivand R, Brunstad R (2005) Further explorations of interactions between agricultural policy and regional growth in Western Europe: approaches to nonstationarity in spatial econometrics. 45th Congress of the European Regional Science Association, Amsterdam 23-27 August, 2005. Brunsdon C, Fotheringham AS, Charlton M (1996) Geographically weighted regression: a method for exploring spatial nonstationarity, Geographical Analysis 28, 281-298 Brunsdon C, Fotheringham AS, Charlton M (1998a) Geographically weighted regression-Modeling spatial non-stationarity. The Statistician 47-3, 431-443 Brunsdon C, Fotheringham AS, Charlton M (1998b) Spatial nonstationarity and autoregressive models. Environment and Planning A 30, 957–973 Brunsdon C, Fotheringham AS, Charlton M (1999) Some notes on parametric significance tests for Geographically Weighted Regression, Journal of Regional Science, 39, 497-524. Casetti E (1972) Generating models by the expansion method: applications to geographical research. Geographical Analysis 4, 81-91. Casetti E, 1982, `Drift analysis of regression analysis: an application to the investigation of fertility development relations, Modeling and Simulation 13, 961-966 Casetti E (1986) The dual expansion method: an application for evaluating the effects of population growth on developement. IEEE Transactions on Systems, Man, and Cybernetics SMC-15, 29-39. Chasco C (2003) Econometría espacial aplicada a la predicción-extrapolación de datos microterritoriales, Consejería de Economía e Innovación Tecnológica, Comunidad de Madrid. Chasco C, López F (2004) Modelos de regresión espacio-temporales en la estimación de la renta municipal: el caso de la Región de Murcia, Estudios de Economía Aplicada 22-3, 605-629 Cliff AD, Ord JK (1981) Spatial Processes: Models and Applications, Pion, London. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74, 829-836. Cuadrado JR, Mancha T, Garrido R (1998) La convergencia regional en España: Hechos, tendencias y perspectivas. Fundación Argentaria-Visor, Madrid. Eckey HF, Kosfeld R, Türck M (2005) Regional Convergence in Germany. A Geographically Weighted Regression Approach. Volkswirtschaftliche Diskussionsbeiträge 76/05, University of Kassel, Institute of Economics Fingleton B (1999) Spurious spatial regression: some Monte Carlo results with a spatial unit root and spatial cointegration. Journal of Regional Science 39, 1-19 Florax R, Folmer H, Rey SJ (2003) Specification searches in spatial econometrics: the relevance of Hendry’s methodology. Regional Science and Urban Economics 33, 557–579 Foster SA, Gorr WL (1986) An adaptive filter for estimating spatially varying parameters: Application to modeling police hours spent in response to calls for service. Management Science 32, 878–889 Fotheringham AS, Brunsdon C (1999) Local forms of spatial analysis. Geographical Analysis 31, 340-358. Fotheringham AS, Brunsdon C and ME Charlton (1998) Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30, 1905-1927. Fotheringham AS, Brunsdon C, Charlton M (2000) Quantitative geography. Sage, London Fotheringham AS, Brunsdon C and Charlton M (2002) Geographically Weighted Regression. John Wiley and Sons, Chichester, UK. Fotheringham AS, M Charlton and C Brunsdon (1997) Measuring spatial variations in relationships with Geographically Weighted Regression. In Fischer M, A Getis (eds), Recent development in spatial analysis. Springer-Verlag, Berlín, 60-82. Fotheringham AS, M Charlton and C Brunsdon (2001) Spatial variations in school performance: a local analysis using geographically weighted regression. Geographical & Environmental Modelling 5-1, 43-66 Garrido, R. (2002) Cambio Estructural y Desarrollo Regional en España, Madrid, Spain: Pirámide. Getis A, J Ord (1992) The analysis of spatial association by use of distance statistics. Geographical Analysis 24, 189-206. Gorr WL, Olligschlaeger AM (1994) Weighted spatial adaptive filtering: Monte Carlo studies and application to illicit drug market modeling. Geographical Analysis 26, 67–87 Griffith DA (1978) A spatially adjusted ANOVA model, Geographical Analysis, 10, 296-301. Griffith DA (1992) A spatially adjusted N-way ANOVA model. Regional Science and Urban Economics 22, 347-369. Huang Y, Leung Y (2002) Analysing regional industrialisation in Jiangsu province using geographically weighted regression. Journal of Geographical Systems 4, 233–249 Hurvich CM, Simonoff JS, Tsai CL (1998) Smoothing parameter selection in non-parametric regression using an improved Akaike information criterion. Journal of Real State Society, Series B (Statistic Methodology) 60(2), 271–293 Jenks GF, Caspall FC (1971) Error on choroplethic maps: definition, measurement, reduction. Annals of the Association of American Geographers 61-2, 217-244 INE (2007) Contabilidad Regional de España. Available in http://www.ine.es/inebase Kentor J and Miller H (2004) The Impact of Globalization on the Changing Relationships Between Geographic and Economic Space: A geographically weighted regression analysis of global interlocking corporate directorates 1970 – 2000. Workshop: Globalization in the World-System: Mapping Change Over Time. University of California. February 7-8, 2004. Available in http://www.csiss.org/events/meetings/time-mapping/files/kentor_paper.pdf “la Caixa” (2005) Anuario Económico de España 2005. Servicio de Estudios, Barcelona. Leung Y, Mei CL, Zhang WX (2000a) Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environment and Planning A 32, 9–32 Leung Y, Mei CG, Zhang WX (2000b) Testing for spatial autocorrelation among the residuals of the geographically weighted regression. Environment and Planning A 32, 871-890 LeSage J (1999) The Theory and Practice of Spatial Econometrics, University of Toledo. Available in http://www.spatial-econometrics.com/html/sbook.pdf LeSage J (2004) A family of Geographically Weighted Regression models. In Anselin L, Florax R, Rey S (eds) Advances in Spatial Econometrics:Methodology, Tools and Applications, Springer-Verlag, 241-264 McMillen, DP (1996) One hundred fifty years of land values in Chicago: a nonparametric approach, Journal of Urban Economics 40, 100-124 McMillen, DP, McDonald JF (1997) A nonparametric analysis of employment density in a polycentric city,” Journal of Regional Science 37, 591-612 Mennis JL, Jordan L (2005) The Distribution of Environmental Equity: Exploring Spatial Nonstationarity in Multivariate Models of Air Toxic Releases. Annals of the Association of American Geographers, 95(2), 2005, pp. 249–268 Openshaw S (1993) Some suggestions concerning the development of artificial intelligence tools for spatial modelling and analysis in GIS. In Fischer M.M. and P Nijkamp (eds), Geographic Information Systems, spatial modelling and policy evaluation, Berlin, Springer Verlag, 17-33. Paez A, Uchida T, Miyamoto K (2002a) A general framework for estimation and inference of geographically weighted regression models: 1. Location-specific kernel bandwidths and a test for local heterogeneity. Environmental and Planning A 34, 733–754 Paez A, Uchida T, Miyamoto K (2002b) A general framework for estimation and inference of geographically weighted regression models: 2. Spatial association and model specification tests. Environmental and Planning A 34, 883–904 Peeters L, Chasco C (2006) Ecological inference and spatial heterogeneity: an entropy-based distributionally weighted regression approach, Papers in Regional Science 85-2, 257-76 Vicéns J, Chasco C (1998) Estimación de la renta familiar disponible municipal y regional de 1996. Papeles de Discusión 2, Servicio de Estudios “la Caixa”, Barcelona. Wand C, Jones B (1995) Kernel smoothing. London: Chapman and Hall Wheeler D, Tiefeldsdorf M (2005) Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems 7, 161–187 Yildirim J, N. Öcalb (2006) A sectoral analysis of spatial regional employment dynamics of Turkish provinces. I Seminar in Spatial Econometrics, Rome, 25-27 May, 2006. Yu DL, Wu C (2004) Understanding population segregation from Landsat ETM+ imagery: a geographically weighted regression approach, GIScience and Remote Sensing 41-(3, 187–206 Yu D-L (2006) Spatially varying development mechanisms in the Greater Beijing Area: a geographically weighted regression investigation, The Annals of Regional Science 40-1, 173-190. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/9581 |
Available Versions of this Item
-
Modeling spatial variations in household disposable income with Geographically Weighted Regression. (deposited 12 Feb 2007)
- Modeling spatial variations in household disposable income with Geographically Weighted Regression. (deposited 16 Jul 2008 00:29) [Currently Displayed]