Zaynutdinova, Alsu and Pisarevskaya, Dina and Zubov, Maxim and Makarov, Ilya (2019): Deception Detection in Online Media. Published in: CEUR Workshop Proceedings , Vol. 2479, (26 September 2019): pp. 121-127.
Preview |
PDF
project5.pdf Download (448kB) | Preview |
Abstract
Russian Federation and European Union are fighting againstfake news together with other countries in various topics. The disinform-ation affected British referendum of existing EU, the US election andCatalonia’s referendum are broadly studied. A need for automated fact-checking increases, European Commission’s Action Plan 8 is an evidence.In this work, we develop a model for detecting disinformation in Russianlanguage in online media. We use reliable and unreliable sources to com-pare named entities and verbs extracted using DeepPavlov library. Ourmethod shows four time greater recall compared to chosen baseline.
Item Type: | MPRA Paper |
---|---|
Original Title: | Deception Detection in Online Media |
English Title: | Deception Detection in Online Media |
Language: | English |
Keywords: | Fake news; Information extraction; Fact checking; Deep-Pavlov; Named Entities |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling K - Law and Economics > K4 - Legal Procedure, the Legal System, and Illegal Behavior > K42 - Illegal Behavior and the Enforcement of Law M - Business Administration and Business Economics ; Marketing ; Accounting ; Personnel Economics > M3 - Marketing and Advertising > M38 - Government Policy and Regulation Z - Other Special Topics > Z1 - Cultural Economics ; Economic Sociology ; Economic Anthropology > Z18 - Public Policy |
Item ID: | 97316 |
Depositing User: | Dr. Rustam Tagiew |
Date Deposited: | 09 Dec 2019 15:54 |
Last Modified: | 09 Dec 2019 15:54 |
References: | Allcott, H., Gentzkow, M.: Social Media and Fake News in the 2016 Election.Journal of Economic Perspectives31(2-Spring), 211–236 (2017) Baly, R., Karadzhov, G., Alexandrov, D., Glass, J., Nakov, P.: Predicting factual-ity of reporting and bias of news media sources. arXiv preprint arXiv:1810.01765(2018) Chernodub, A., Oliynyk, O., Heidenreich, P., Bondarenko, A., Hagen, M., Biemann,C., Panchenko, A.: Targer: Neural argument mining at your fingertips. In: Proceed-ings of the 57th Annual Meeting of the Association for Computational Linguistics:System Demonstrations. pp. 195–200 (2019) Duma: What is fake news and what is punishment for it? European Commision: Action plan against disinformation (2018) Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The rise of socialbots. Communications of the ACM59(7), 96–104 (2016) Galitsky, B., Parnis, A.: Accessing validity of argumentation of agents of the in-ternet of everything. In: Artificial Intelligence for the Internet of Everything, pp.187–216. Elsevier (2019) Hardalov, M., Koychev, I., Nakov, P.: In search of credible news. In: InternationalConference on Artificial Intelligence: Methodology, Systems, and Applications. pp.172–180. Springer (2016) Khaldarova, I., Pantti, M.: Fake news: The narrative battle over theukrainian conflict. Journalism Practice10(7), 891–901 (2016). ht-tps://doi.org/https://doi.org/10.1080/17512786.2016.1163237 Lazer, D.M., Baum, M.A., Benkler, Y., Berinsky, A.J., Greenhill, K.M., Menczer,F., Metzger, M.J., Nyhan, B., Pennycook, G., Rothschild, D., et al.: The scienceof fake news. Science359(6380), 1094–1096 (2018) Meduza: Сайт “Панорама” стал русским the onion Pisarevskaya, D.: Deception detection in news reports in the russian language: Lex-ics and discourse. Proceedings of the 2017 EMNLP Workshop on Natural LanguageProcessing meets Journalism p. 74–79 (2017) Pisarevskaya, D., Galitsky, B., Taylor, J., Ozerov, A.: An anatomy of a lie. In:Companion Proceedings of The 2019 World Wide Web Conference. pp. 373–380.ACM (2019) Pisarevskaya, D., Litvinova, T., Litvinova, O.: Deception detection for the russianlanguage: Lexical and syntactic parameters. In: Proceedings of RANLP NaturalLanguage Processing and Information Retrieval Workshop. p. 1–10. Varna, Bul-garia (2017), https://aclweb.org/anthology/papers/W/W17/W17-7701/ Spohr, D.: Fake news and ideological polarization: Filter bubbles and selectiveexposure on social media. Business Information Review34(3), 150–160 (2017) Vicario, M.D., Quattrociocchi, W., Scala, A., Zollo, F.: Polarization and fake news:Early warning of potential misinformation targets. ACM Transactions on the Web(TWEB)13(2), 10 (2019) Zhou, X., Jain, A., Phoha, V.V., Zafarani, R.: Fake news early detection: A theory-driven model. arXiv preprint arXiv:1904.11679 (2019) |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/97316 |