Harin, Alexander (2019): Behavioral sciences and auto-transformations. Introduction.
Preview |
PDF
MPRA_paper_97344.pdf Download (122kB) | Preview |
Abstract
The goal of the present article is to define transformations (named here as auto-transformations) of probability density functions of random variables into similar functions having smaller sizes of their domains. In particular, auto-transformations from infinite to finite sizes of domains will be analyzed. The goal is aroused from the well-known problems of behavioral sciences.
Item Type: | MPRA Paper |
---|---|
Original Title: | Behavioral sciences and auto-transformations. Introduction |
Language: | English |
Keywords: | probability; variance; noise; bias; measurement; utility theory; prospect theory; behavioral economics; psychology; decision sciences; social sciences; |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C18 - Methodological Issues: General D - Microeconomics > D8 - Information, Knowledge, and Uncertainty D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D81 - Criteria for Decision-Making under Risk and Uncertainty D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D84 - Expectations ; Speculations |
Item ID: | 97344 |
Depositing User: | Alexander Harin |
Date Deposited: | 01 Dec 2019 20:51 |
Last Modified: | 01 Dec 2019 20:51 |
References: | 1. Aczel, J., Luce, D.R.: A behavioral condition for Prelec’s weighting function on the positive line without assuming W(1) = 1. J. Math. Psychol. 51(1), 126-129 (2007). 2. Applebaum, D., Siakalli, M.: Stochastic stabilization of dynamical systems using Levy noise. Stoch. Dynam. 10(4), 509-527 (2010). 3. Arnold, L., Crauel, H., Wihstutz, V.: Stabilization of linear systems by noise. SIAM J. Control Optim. 21(1), 451-461 (1983). 4. Barbu, V.: The internal stabilization by noise of the linearised Navier-Stokes equation. Contr. Op. Ca. Va. 17(1), 117-130 (2009). 5. Bhatia, R., Davis, C.: A better bound on the variance. Am. Math. Mon. 107(1), 353-357 (2000). 6. Biagini, S., Frittelli, M.: A unified framework for utility maximization problems: an Orlicz space approach. Ann. Appl. Probab. 18(1), 929-966 (2008). 7. Cacoullos, T.: On upper and lower bounds for the variance of a function of a random variable. Ann. Probab. 10(3), 799-809 (1982). 8. Cerrai, S.: Stabilization by noise for a class of stochastic reaction-diffusion equations. Probab. Theory Rel. 133(2), 190-214 (2005). 9. Chernoff, H.: The identification of an element of a large population in the presence of noise. Ann. Probab. 9(1), 533-536 (1981). 10. Choulli, T., Ma, J.: Explicit description of HARA forward utilities and their optimal portfolios. Theory Probab. Appl. 61(1), 57-93 (2017). 11. Dokov, S.P., Morton, D.P.: Second-order lower bounds on the expectation of a convex function. Math. Oper. Res. 30(3), 662-677 (2005). 12. F. Flandoli B. Gess, M.S.: Synchronization by noise. Probab. Theory Rel. 168(3-4), 511-556 (2017). 13. G. Hua M. Liub, X.M., Songb, M.: Noise suppresses exponential growth under regime switching. J. Math. Anal. Appl. 355(2), 783-795 (2009). 14. Giacomin, G., Poquet, C.: Noise, interaction, nonlinear dynamics and the origin of rhythmic behaviors. Braz. J. Prob. Stat. 29(2), 460-493 (2015). 15. Harin, A.: Data dispersion in economics (II) - inevitability and consequences of restrictions. Rev. Econ. Fin. 2(4), 24-36 (2012). 16. Harin, A.: Forbidden zones for the expectation. new mathematical results for behavioral and social sciences. MPRA No 86650 (2018). 17. Harin, A.: Principle of uncertain future and utility. MPRA Paper, No 1959 (2007). 18. Harin, А.: Data dispersion in economics (I) – Possibility of restrictions. Rev. Econ. Fin. 2 (3): 59-70 (2012). 19. Harin, A.: Data dispersion in economics (II) – Inevitability and Consequences of Restrictions, Rev. Econ. Fin. 2(4), 24–36 (2012). 20. Harin, A.: Some estimations of the minimal magnitudes of forbidden zones in experimental data. MPRA Paper, No 80319 (2017). 21. Harin, A.: Forbidden zones for the expectation. New mathematical results for behavioral and social sciences. MPRA Paper, No 86650 (2018). 22. Kahneman, D., Thaler, R.: Anomalies: Utility maximization and experienced utility. J. Econ. Perspect. 20(1), 221-234 (2006). 23. Madansky, A.: Bounds on the expectation of a convex function of a multivariate random variable. Ann. Math. Stat. 30(1), 743-746 (1959). 24. Moriguti, S.: A lower bound for a probability moment of any absolutely continuous distribution with finite variance. Ann. Math. Stat. 23(2), 286-289 (1959). 25. von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. Princeton University Press, Princeton (1944). 26. Pinelis, I.: Exact lower bounds on the exponential moments of truncated random variables. J. Appl. Probab. 48(2), 547-560 (2011). 27. Prekopa, A.: The discrete moment problem and linear programming. Discrete Appl. Math. 27(3), 235-254 (1990). 28. Scheutzow, M.: Noise can create periodic behavior and stabilize nonlinear diffusions. Stoch. Proc. Appl. 20(2), 323-331 (1985). 29. Sharma, R., Bhandari, R.: On variance upper bounds for unimodal distributions. Commun. Stat. A-Theor. 43(21), 4503-4513 (2014). 30. Sharma, R., Gupta, M., Kapoor, G.: Some better bounds on the variance with applications. J. Math. Inequal. 4(3), 355-363 (2010). 31. Steingrimsson, R., Luce, R.D.: Empirical evaluation of a model of global psychophysical judgments: IV. Forms for the weighting function. J. Math. Psychol. 51(1), 29-44 (2007). 32. Vostrikova, L.: Expected utility maximization for exponential Levy models with option and information processes. Theory Probab. Appl. 61(1), 107-128 (2017). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/97344 |