Kounetas, Konstantinos and Stergiou, Eirini (2020): European industrial eco-efficiency under different pollutants' scenarios and heterogeneity structures. Is there a definite direction?
Preview |
PDF
MPRA_paper_98583.pdf Download (631kB) | Preview |
Abstract
Eco-efficiency has intensified the attention of policymakers in the last decades as the ability to create more goods and services with less impact on the environment consists an instrument towards sustainability. In this paper we utilize data of 14 industries from 27 European countries from 1995 to 2011 to estimate distinct objectives of economic and ecological performance by utilizing directional distance functions under a metafrontier framework. Our results reveal that the existence of a unified technology set causes large differences in the industrial eco-efficiency levels while energy intensive industries can be characterized as the most eco-inefficient .Although the speed of eco-efficiency convergence increases throughout the years, the case of CO2 emissions presents an erratic behavior compared to the other pollutants. Thus, a decomposition of industrial CO2 emissions can be considered as a further subject of research in our study in order to identify the drivers of this change through time.
Item Type: | MPRA Paper |
---|---|
Original Title: | European industrial eco-efficiency under different pollutants' scenarios and heterogeneity structures. Is there a definite direction? |
English Title: | European industrial eco-efficiency under different pollutants' scenarios and heterogeneity structures. Is there a definite direction? there a de nite direction? |
Language: | English |
Keywords: | Eco-efficiency, Metafrontier, Spillovers, Catch-up, Kaya Identity, European Industries. |
Subjects: | D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q53 - Air Pollution ; Water Pollution ; Noise ; Hazardous Waste ; Solid Waste ; Recycling Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q57 - Ecological Economics: Ecosystem Services ; Biodiversity Conservation ; Bioeconomics ; Industrial Ecology |
Item ID: | 98583 |
Depositing User: | Professor Konstantinos Kounetas |
Date Deposited: | 17 Feb 2020 08:13 |
Last Modified: | 17 Feb 2020 08:13 |
References: | Abramovitz, M., 1986. Catching up, forging ahead, and falling behind. The Journal of Economic History, 46(2),385-406. Ang, B. W., Pandiyan, G., 1997. Decomposition of energy-induced CO2 emissions in manufacturing. Energy Economics, 19(3), 363-374. Ang, B. W., 2004. Decomposition analysis for policymaking in energy: which is the preferred method? Energy policy, 32(9), 1131-1139. Ang, B. W., 2005. The LMDI approach to decomposition analysis: a practical guide.Energy policy, 33(7), 867-871. Ang, B. W., 2015. LMDI decomposition approach:A guide for implementation.Energy Policy, 86, 233-238. Ang, B. W., Liu, F. L., Chew, E. P., 2003. Perfect decomposition techniques in energy and environmental analysis.Energy Policy, 31(14), 1561-1566. Baltagi, B., 2008. Econometric analysis of panel data. John Wiley & Sons. Battese, G. E., Rao, D. P., O'donnell, C. J., 2004. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. Journal of Productivity Analysis, 21(1), 91-103. Beltrán-Esteve, M., Gómez-Limón, J. A., Picazo-Tadeo, A. J., Reig-Martínez, E., 2014. A metafrontier directional distance function approach to assessing eco-efficiency.Journal of Productivity Analysis 41(1), 69-83. Brundtland, G. H., 1987. Report of the World Commission on environment and development:" our common future". United Nations. Burritt, R., Schaltegger, S., 2001. Eco-efficiency in corporate budgeting. Environmental Management and Health 12(2), 158-174. Camarero, M., Castillo, J., Picazo-Tadeo, A. J., Tamarit, C., 2013. Eco-efficiency and convergence in OECD countries. Environmental and Resource Economics, 55(1), 87-106. Carree, M., Klomp, L., 1997. Testing the convergence hypothesis: a comment. Review of Economics Statistics. 79(4), 683-686. Casu, B., Ferrari, A., Girardone, C., Wilson, J. O., 2016. Integration, productivity and technological spillovers: Evidence for eurozone banking industries. European Journal of Operational Research, 255(3), 971-983. Chambers, R. G., Chung, Y., Färe, R., 1998. Profit, directional distance functions, and Nerlovian efficiency. Journal of Optimization Theory Application, 98(2), 351-364. Choi, I., 2001. Unit root tests for panel data. Journal of International Money and Finance, 20(2), 249-272. Cohen, W. M., & Levinthal, D. A., 1990. Absorptive capacity: A new perspective on learning and innovation. Administrative science quarterly, 128-152. Dahlström, K., Ekins, P., 2005. Eco‐efficiency trends in the UK steel and aluminum industries. Journal of Industrial Ecology, 9(4), 171-188. De Haes H.U., Finnveden G., Goedkoop M., Hauschild M.,. Hertwich E, Hofstetter P., Jolliet O., Klöpffer W., Krewitt W., Lindeijer E., Müller-Wenk R., Olsen S., Pennington D., Potting J., Steen B., 2002. Life cycle impact assessment: striving towards best practice. SETAC Press Proceedings. De Koeijer, T. J., Wossink, G. A. A., Struik, P. C., Renkema, J. A., 2002. Measuring agricultural sustainability in terms of efficiency: the case of Dutch sugar beet growers. Journal of Environmental Management, 66(1),9-17. Deutch, J., 2017. Decoupling economic growth and carbon emissions. Joule, 1(1), 3-5. Durlauf, S. N., Quah, D. T., 1999. The new empirics of economic growth. Handbook of macroeconomics 1, 235-308. Dyckhoff, H., Allen, K., 2001. Measuring ecological efficiency with data envelopment analysis (DEA). European Journal of Operational Research, 132(2), 312-325. Fan, Y., Bai, B., Qiao, Q., Kang, P., Zhang, Y., Guo, J., 2017. Study on eco-efficiency of industrial parks in China based on data envelopment analysis. Journal of Environmental Management, 192, 107-115. Färe, R., Grosskopf, S., 2000. Theory and application of directional distance functions. Journal of Productivity Analysis 13(2), 93-103. Färe, R., Grosskopf, S., 2010. Directional distance functions and slacks-based measures of efficiency. European Journal of operational research, 200(1), 320-322. Färe, R., Lovell, C. K., 1978. Measuring the technical efficiency of production. Journal of Economic theory, 19(1), 150-162. Farrell, M. J., 1957. The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281. Carraro C., Gerlagh, R., & van der Zwaan B., 2003. Endogenous technical change in environmental macroeconomics. Resource and Energy Economics, 25, 1-10. Glauser, M., Müller, P., 1997. Eco-efficiency: a prerequisite for future success. CHIMIA Int. J. Chem. 51(5), 201-206. Gómez, T., Gémar, G., Molinos-Senante, M., Sala-Garrido, R., Caballero, R., 2018. Measuring the eco-efficiency of wastewater treatment plants under data uncertainty. Journal of Environmental Management, 226, 484-492. Gómez-Calvet, R., Conesa, D., Gómez-Calvet, A. R., Tortosa-Ausina, E., 2016. On the dynamics of eco-efficiency performance in the European Union. Computer and Operations Research, 66, 336-350. Guinée, J. B., 2002. Handbook on life cycle assessment operational guide to the ISO standards. International Journal of Life Cycle Assessment, 7(5), 311-313. Hadri, K., 2000. Testing for stationarity in heterogeneous panel data. Economic Journal 3(2), 148-161. Halkos, G. E., Tzeremes, N. G., 2011. A conditional nonparametric analysis for measuring the efficiency of regional public healthcare delivery: An application to Greek prefectures. Health policy, 103(1), 73-82. Hellweg, S., Doka, G., Finnveden, G., Hungerbühler, K., 2005. Assessing the Eco‐efficiency of End‐of‐Pipe Technologies with the Environmental Cost Efficiency Indicator. Journal of Industrial Ecology 9(4), 189-203. Huppes, G., Ishikawa, M., 2007. Quantified eco-efficiency. Springer. Iribarren, D., Hospido, A., Moreira, M. T., Feijoo, G., 2011. Benchmarking environmental and operational parameters through eco-efficiency criteria for dairy farms. Science and Total Environment 409(10), 1786-1798. Jung, S., An, K. J., Dodbiba, G., Fujita, T., 2012. Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity. Energy, 46(1), 231-241. Kaya, Y. 1990. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios. Paper presented to the IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris, 1990 (mimeo). Kontolaimou, A., Tsekouras, K., 2010. Are cooperatives the weakest link in European banking? A non-parametric metafrontier approach. Journal of Banking and Finance 34(8), 1946-1957. Korhonen, P. J., Luptacik, M., 2004. Eco-efficiency analysis of power plants: An extension of data envelopment analysis. European Journal of Operational Research, 154(2), 437-446. Kortelainen, M., Kuosmanen, T., 2007. Eco-efficiency analysis of consumer durables using absolute shadow prices. Journal of Productivity Analysis, 28(1-2), 57-69. Kounetas, K.,2015. Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries. Energy Policy 83, 277-287. Kounetas, K. E., 2018. Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides? Energy Economics, 69, 111-127. Kuosmanen, T., Kortelainen, M., 2005. Measuring eco‐efficiency of production with data envelopment analysis. Journal of Industrial Ecology, 9(4), 59-72. Kuosmanen, T., Kortelainen, M., 2005. Measuring eco‐efficiency of production with data envelopment analysis.Journal of Industrial Ecology, 9(4), 59-72. Levin, A., Lin, C. F., Chu, C. S. J., 2002. Unit root tests in panel data: asymptotic and finite-sample properties. Journal of Econometrics, 108(1), 1-24. Li, W., Ou, Q., Chen, Y., 2014. Decomposition of China’s CO 2 emissions from agriculture utilizing an improved Kaya identity. Environmental Science and Pollution Research, 21(22), 13000-13006. Lozano, S., Iribarren, D., Moreira, M. T., Feijoo, G., 2009. The link between operational efficiency and environmental impacts: a joint application of life cycle assessment and data envelopment analysis. Science and Total Environment, 407(5), 1744-1754. Ma, M., Cai, W., 2018. What drives the carbon mitigation in Chinese commercial building sector? Evidence from decomposing an extended Kaya identity. Science of the Total Environment, 634, 884-899. Ma, C., Stern, D. I., 2008. China's changing energy intensity trend: a decomposition analysis. Energy economics, 30(3), 1037-1053. Madden, K., Young, R., Brady, K. and Hall, J., 2005. Eco-efficiency: Learning Module. World Business Council for Sustainable Development, File Winds International. Managi, S., Kaneko, S., 2009. Environmental performance and returns to pollution abatement in China. Ecological Economics 68(6), 1643-1651. Nelson, R. R., & Phelps, E. S., 1966. Investment in humans, technological diffusion, and economic growth. The American economic review, 56(1/2), 69-75. O’Donnell, C. J., Rao, D. P., Battese, G. E., 2008. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empirical Economics, 34(2), 231-255. O'Mahony, T., 2013. Decomposition of Ireland's carbon emissions from 1990 to 2010: An extended Kaya identity. Energy Policy. 59, 573-581. Picazo-Tadeo, A. J., Gómez-Limón, J. A., Reig-Martínez, E., 2011. Assessing farming eco-efficiency: a data envelopment analysis approach. Journal of Environmental Management, 92(4), 1154-1164. Picazo-Tadeo, A. J., Beltrán-Esteve, M., Gómez-Limón, J. A., 2012. Assessing eco-efficiency with directional distance functions. European Journal of Operational Research, 798-809. Quah, D., 1993. Empirical cross-section dynamics in economic growth. Sagar, A. D., & Van der Zwaan, B., 2006. Technological innovation in the energy sector: R&D, deployment, and learning-by-doing. Energy Policy, 34(17), 2601-2608. Saling, P., Kicherer, A., and Dittrich-Krαmer, B., Wittlinger, R., and Zombik, W., Schmidt, I., and Schrott, W., and Schmidt, S., 2002. Eco-efficiency analysis by BASF: the method. International Journal of Life Cycle Assessment, 7(4), 203-218. Schleich, J., Eichhammer, W., Boede, U., Gagelmann, F., Jochem, E., Schlomann, B., Ziesing, H. J., 2001. Greenhouse gas reductions in Germany—lucky strike or hard work? Climate Policy, 1(3), 363-380. Scholz, R. W., & Wiek, A. (2005). Operational Eco‐efficiency: Comparing Firms' Environmental Investments in Different Domains of Operation. Journal of Industrial Ecology, 9(4), 155-170. Seiford, L. M., Zhu, J., 2002. Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 142(1), 16-20. Shao, L., Yu, X., Feng, C., 2019. Evaluating the eco-efficiency of China's industrial sectors: A two-stage network data envelopment analysis. Journal of Environmental. Management, 247, 551-560. Schaltegger, S., Sturm, A., 1989. Ecology induced management decision support. Starting points for instrument formation. WWZ-discussion Paper No. 8914. WWZ, Basel, Switzerland. Schmalensee, R., Stoker, T. M., Judson, R. A., 1998. World carbon dioxide emissions: 1950–2050. Review of Economics and Statistics, 80(1), 15-27. Schmidheiny, S., Timberlake, L., 1992. Changing course: A global business perspective on development and the environment. MIT press. Schmidheiny, S., Zorraquin, F. J., 1998. Financing change: the financial community, eco-efficiency, and sustainable development. MIT press. Schmidt, I., Meurer, M., Saling, P., Kicherer, A., Reuter, W., Gensch, C. O., 2004. Managing sustainability of products and processes with the socio-eco-efficiency analysis by BASF. Greener Management International, 45, 79-94. Štreimikienė, D., Balezentis, T., 2016. Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States. Renewable and Sustainable Energy Reviews, 58, 1108-1113. Treffers, D. J., Faaij, A., Spakman, J., & Seebregts, A., 2005. Exploring the possibilities for setting up sustainable energy systems for the long term: two visions for the Dutch energy system in 2050. Energy Policy, 33(13), 1723-1743. Tsekouras, K., Chatzistamoulou, N., Kounetas, K., 2017. Productive performance, technology heterogeneity and hierarchies: Who to compare with whom. International Journal of Production economics, 193, 465-478. Tsekouras, K., Chatzistamoulou, N., Kounetas, K., Broadstock, D. C., 2016. Spillovers, path dependence and the productive performance of European transportation sectors in the presence of technology heterogeneity. Technological Forecasting and Social Change 102, 261-274. Wang, Y., Liu, J., Hansson, L., Zhang, K., Wang, R., 2011. Implementing stricter environmental regulation to enhance eco-efficiency and sustainability: a case study of Shandong Province’s pulp and paper industry, China. Journal of Cleaner Production, 19(4), 303-310. Zhang, B., Bi, J., Fan, Z., Yuan, Z., Ge, J., 2008. Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecological Economics 68(1-2), 306-316. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/98583 |