Sauvenier, Xavier and Valckx, Jan and Van Cauwenbergh, Nora and Wauters, Erwin and Bachev, Hrabrin and Biala, K. and Bielders, Charles and Brouckaert, Veronique and Garcia-Cidad, V. and Goyens, S. and Hermy, Martin and Mathijs, Erik and Muys, Bart and Vanclooster, M. and Peeters, Alain (2005): Framework for assessing sustainability levels in Belgium agricultural systems - SAFE. Published in: Belgium Science Poilicy , Vol. 1, No. 1 (June 2005): pp. 1-125.
Preview |
PDF
MPRA_paper_99616.pdf Download (2MB) | Preview |
Abstract
Sustainability is now regarded as a crucial property of agricultural systems and its evaluation has become a main challenge for scientists, policy makers and farmers. In the last decade, different sets of indicators have been designed both at national and international levels. Meanwhile, more practical environmental impact assessment (EIA) tools have been developed at the farm level . However, none of these indicator sets can be used at both levels. Further, most of these initiatives focus only on environmental aspects of sustainability and do not take socio-economic aspects into consideration. Indicator selection does not always fit in a consistent and comprehensive framework, although there is a strong need to integrate sustainability indicators in order to facilitate comparison and assessment. Finally, few of these works relate to Belgian agriculture, which up til now lacked a tool for assessing the sustainability of its farms. This project aims at providing a framework for assessing sustainability levels in Belgian agricultural systems (SAFE) that overcomes the deficiencies mentioned above. This is achieved by: 1. Considering the concept of agricultural sustainability in a holistic manner – SAFE accounts for all three pillars of sustainability (environmental, economic & social). 2. Developing (a) a consistent approach for defining sustainability principles and criteria and (b) a core list of sustainability indicators identified through a standardized selection procedure. The ‘SAFE selection procedure’ is a flexible scientific process that builts on knowledge and experience of numerous experts. 3. Ensuring that the tool remains as easy as possible to interpret and thus to use, thanks to the integration procedure of sustainability indicators and the graphic expression of the results. 4. Building on a generic methodology. Though the set of selected indicators presented in this report is specific to the Belgian agricultural context, the method developed for the construction of the SAFE tool can be transferred for assessing sustainability levels in other geographical (Europe, world, …) and sectorial contexts. In particular, principles and criteria defined in SAFE have a universal value. 5. Taking action at three spatial levels, depending on the scale of application: (1) parcel (2) farm or (3) watershed for surface water-related issues, landscape/ecosystem for some soil and biodiversity related issues, and administrative units (region, state) for some environmental as well as for some socio-economic issues.
Item Type: | MPRA Paper |
---|---|
Original Title: | Framework for assessing sustainability levels in Belgium agricultural systems - SAFE |
Language: | English |
Keywords: | sustainability, assessment, agricultural systems, Belgium |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q12 - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q13 - Agricultural Markets and Marketing ; Cooperatives ; Agribusiness Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q15 - Land Ownership and Tenure ; Land Reform ; Land Use ; Irrigation ; Agriculture and Environment Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q16 - R&D ; Agricultural Technology ; Biofuels ; Agricultural Extension Services Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q18 - Agricultural Policy ; Food Policy Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q2 - Renewable Resources and Conservation Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q3 - Nonrenewable Resources and Conservation |
Item ID: | 99616 |
Depositing User: | Hrabrin Bachev |
Date Deposited: | 20 Apr 2020 07:59 |
Last Modified: | 20 Apr 2020 07:59 |
References: | Adriaanse A., 1993. Environmental Policy Performance Indicators. A Study on the Development of Indicators for Environmental Policy in the Netherlands. SDU Publishers: 175 pp. Altieri, M., 1999. The ecological role of biodiversity in agro-ecosystems. Agriculture, Ecosystems and Environment 74: 19-31. Arnold J.G. and Allen P.M., 1993. A comprehensive surface-ground water flow model. J. of Hydrology 142: 47-69. http://www.brc.tamus.edu/swat/index.html Arshad M.A. and Martin S., 2002. Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems and Environment 88: 153-160. Baudry J., Bunce R.G.H. and Burel F., 2000. Hedgerow diversity: an international perspective on their origin, function, and management. Journal of Environmental Management 60: 7-22. Bartel A., 2000. Analysis of landscape pattern: towards a ‘top down’ indicator for evaluation of landuse. Ecological Modelling 130: 87-94. Blonk H. and Lindeijer E.W., 1995. Naar een methodiek voor het kwantificeren van aantasting in LCA. In “RWS DWW. Publication series raw materials1995/15”. IVAM ER University of Amsterdam Delft. Bockstaller C., Girardin P. and van der Werf H.M.G., 1997. Use of agro-ecological indicators for the evaluation of farming systems. European Journal of Agronomy 7: 261-270. Bouché M.B., 1972. Lombriciens de France. Ecologie et Systematique. Annales de Zoologie-Ecologie animale. INRA 72, 2 (n° hors série): 671 p. Bouché M.B. and Aliaga R., 1986. Contre une dégradation physique et chimique des sols et pour leur optimisation économique, l'échantillonnage des Lombriciens: une urgente nécessité. La défense des végétaux 242: 30-36. Braat L., 1991. The predictive meaning of sustainability indicators. In “Search of Indicators of Sustainable Development”. Kuik O.K. and Verbruggen H. (eds.). Kluwer Academic Publishers: 57-70. Brink Ten B.J.E, Hosper S.H. and Colin F., 1991. A quantitative method for description and assessment of ecosystems: the AMOEBA-approach. Mar. Pollut. Bull. 23: 265-270. Brouckaert V., Van Cauwenbergh N., Biala K., Bielders C., Franchois L., Garcia V., Hermy M., Mathijs E., Muys B., Reijnders J., Valckx J., Vanclooster M., Van der Veken B. and Peeters A. , 2003. Framework for assessing sustainability levels in Belgian agricultural systems – SAFE. Framework for assessing sustainability levels in Belgian agricultural systems – SAFE. Part 1: Sustainable production and consumption patterns (SPSD II). Annual intermediary report 2003. Belgian Science Policy: 37 pp + annex. Cellule de l’Etat de l’Environnement wallon, 2004. Rapport sur l’état de l’environnement wallon. Tableau de bord de l’environnement wallon 2004. Ministère de la Région wallonne, DGRNE: 158 p. Collective, 2005. 2005 Environmental Sustainability Index Report. Benchmarking National Environmental Stewardship. Yale Center for Environmental Law and Policy, Center for International Earth Science Information Network Columbia University: 63 pp. Cornelissen A.M.G., van den Berg J., Koops W.J., Grossman M. and Udo H.M.J., 2001. Assessment of the contribution of sustainability indicators to sustainable development: a novel approach using fuzzy set theory. Agriculture, Ecosystems and Environment 86: 173-185. Cornelissen A.M.G., van den Berg J., Koops W.J. and Kaymak U., 2003. Elicitation of expert knowledge for fuzzy evaluation of agricultural production systems. Agriculture, Ecosystems and Environment 95: 118. Kutsch W.L., Steinborn W., Herbst M., Baumann R., Barkmann J. and Kappen L., 2001. Environmental Indication: A Field Test of an Ecosystem Approach to Quantify Biological Self-Organization. Ecosystems 4: 49-66. KWIN-V, 2000. Kwantitatieve veehouderij 2000-2001. Praktijkonderzoek rundvee, schapen en paarden, Lelystad: 443 pp. Lambert R., Van Bol V., Maljean J.F. and Peeters A., 2002. PROP’EAU-SABLE . Recherche-action en vue de la préparation et de la mise en œuvre du plan d’action de la zone des sables bruxelliens en application de la directive européenne CEE/91/676 (nitrates). Rapport final d’activités mars 1997 - mars 2002. Laboratoire d’Ecologie des Prairies, UCL: 107 p. Lammerts van Bueren F. and Blom F., 1997. Hierarchical Framework for the Formulation for Sustainable Forest Management Standards: Principles, Criteria and Indicators. Tropenbos Foundation, Wageningen, The Netherlands. Lenz R., Malkina-Pykh I. and Pykh J., 2000. Introduction and overview. Ecological Modelling 130: 1-11. Lewandowski I., Härdtlein M. and Kaltschmitt M., 1999. Sustainable crop production: definition and methodological approach for assessing and implementing sustainability. Crop science 39: 184-193. Lewis K.A. and Bardon K.S., 1998. EMA. A computer-based informal environmental management system for agriculture. Environ. Modell. Software 13: 123-137. Lindeijer E.W., Van Kampen P.J., Fraanje P.J., Van Dobben H.F., Nabuurs G.J., Schouwenberg E.P.A.G., Prins A.H., Dankers N. and Leopold M.F., 1998. Biodiversity and life support indicators for land use impacts in LCA.1998. Publication series raw materials. Rapport W-DWW 98-059, number 1998/07. Ministry of transport, public works and water management, The Netherlands. Londo G., 1976. Decimal scale for relevés of permanent quadrats. Vegetatio 33: 61-64. Lopez R.D. and Fennessy M.S., 2002. Using the floristic quality assessment index (FQAI) in wetlands as a biological indicator of landscape condition along a gradient of human influence. Ecological Applications 12, 2: 487-497. López-Ridaura S., Masera O. and Astier M., 2002. Evaluating the sustainability of complex socioenvironmental systems. The MESMIS framework. Ecological Indicators 2: 135-148. Madlener R., Robledo C., Muys, B. Hektor B. and Domac J., 2003. A Sustainability Framework for Enhancing the Long-Term Success of LULUCF Projects. CEPE Working Paper No. 29. Centre for energy of Policy and Economics: 26 pp. MAFF (Ministry of Agriculture, Fisheries and Food), 2000. Towards sustainable agriculture (a pilot set of indicators). MAFF Publication. London, UK. Maljean J. and Peeters A., 2001. Integrated farming and biodiversity: impacts and political measures. PanEuropean Biological and Landscape Diversity Strategy – High-level Pan-European Conference on Agriculture and Biodiversity: towards integrating biological and landscape diversity for sustainable agriculture in Europe. Council of Europe, UNEP, STRA-CO/AGRI 27: 30 pp. Maraite H., Steurbaut P. and Debongnie P., 2005. Development of awareness tools for a sustainable use of pesticides. Final report. Sustainable production and consumption patterns (SPSD II). Belgian Science Policy (BSP): 105 pp. Marks L.A., Dunn E.G., Keller J.M. and Godsey L.D., 1995. Multiple Criteria Decision Making (MCDM) Using Fuzzy Logic: An Innovative Approach to Sustainable Agriculture. Proceedings of the 3rd International Symposium on Uncertainty Modelling and Analysis, Los Alamitos. IEEE Computer Society: 503-508. Mayrhofer, P., Steiner, C., Gärber, E., Gruber, E., 1996. Regionalprogramm Ökopunkte Niederösterreich. Informationsheft. NÖ Landschaftsfonds, Wien, Austria. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/99616 |