Pipitpukdee, Siwabhorn and Attavanich, Witsanu and Bejranonda, Somskaow (2020): Climate Change Impacts on Sugarcane Production in Thailand. Published in: Atmosphere , Vol. 4, No. 11 (19 April 2020): pp. 1-16.
Preview |
PDF
MPRA_paper_99796.pdf Download (3MB) | Preview |
Abstract
This study investigated the impact of climate change on yield, harvested area, and production of sugarcane in Thailand using spatial regression together with an instrumental variable approach to address the possible selection bias. The data were comprised of new fine-scale weather outcomes merged together with a provincial-level panel of crops that spanned all provinces in Thailand from 1989–2016. We found that in general climate variables, both mean and variability, statistically determined the yield and harvested area of sugarcane. Increased population density reduced the harvested area for non-agricultural use. Considering simultaneous changes in climate and demand of land for non-agricultural development, we reveal that the future sugarcane yield, harvested area, and production are projected to decrease by 23.95%–33.26%, 1.29%–2.49%, and 24.94%–34.93% during 2046–2055 from the baseline, respectively. Sugarcane production is projected to have the largest drop in the eastern and lower section of the central regions. Given the role of Thailand as a global exporter of sugar and the importance of sugarcane production in Thai agriculture, the projected declines in the production could adversely affect the well-being of one million sugarcane growers and the stability of sugar price in the world market.
Item Type: | MPRA Paper |
---|---|
Original Title: | Climate Change Impacts on Sugarcane Production in Thailand |
Language: | English |
Keywords: | climate change impacts; sugarcane; yield; harvested area; production; Thai agriculture |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C23 - Panel Data Models ; Spatio-temporal Models Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q15 - Land Ownership and Tenure ; Land Reform ; Land Use ; Irrigation ; Agriculture and Environment Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q16 - R&D ; Agricultural Technology ; Biofuels ; Agricultural Extension Services Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q54 - Climate ; Natural Disasters and Their Management ; Global Warming |
Item ID: | 99796 |
Depositing User: | Witsanu Attavanich |
Date Deposited: | 23 Apr 2020 08:58 |
Last Modified: | 23 Apr 2020 08:58 |
References: | 1. FAO. Is sugar pure, white and deadly? In Proceedings of the Fiji/FAO Asia Pacific Sugar Conference, Fiji, 29–31 October 1997; pp. 41–44. 2. International Sugar Organization. 2019. The Sugar Market. Available online: https://www.isosugar.org/sugarsector/sugar (accessed on 23 August 2019). 3. Murphy, R. Sugarcane: Production Systems, Uses and Economic Importance; Nova Science Publishers; New York, 2017; p. 39. 4. FAOSTAT. Food and Agriculture Organization of the United Nations, Statistics Division. Forestry Production and Trade. Available online: http://www.fao.org/faostat/en/#data/FO (accessed on 4 April 2019). 5. USDA. Foreign Agricultural Service. 2020. Production, Supply and Distribution. Available online: https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery (accessed on 28 February 2020). 6. UN comtrade. 2019. World Cane Sugar Export’s Statistics. Available online: https://comtrade.un.org/data/https://comtrade.un.org/data (accessed on 25 August 2019). 7. Office of the Cane and Sugar Board. 2019. Production Report. Available online: http://www.ocsb.go.th/th/home/index.php (accessed on 20 February 2020). 8. Bangkok Post. 2019. Thai Sugar Body Seeks to Sweeten Environment and Health. Available online: https://www.bangkokpost.com/business/1758849/thai-sugar-body-seeks-to-sweeten-environment-and (accessed on 22 February 2020). 9. IPCC. 2013: Annex I: Atlas of Global and Regional Climate Projections. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovermental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA., 2013; pp. 1311–1393. 10. Adams, R.M.; Rosenzweig, C.; Peart, R.M.; Ritchie, J.T.; McCarl, B.A.; Glyer, J.D.; Curry, R.B.; Jones, J.W.; Boote, K.; Allen, L.H. Global climate change and US agriculture. Nature 1990, 345, 219–224, doi:10.1038/345219a0. 11. Attavanich, W.; McCarl, B.A. How is CO2 affecting yields and technological progress? A statistical analysis. Clim. Chang. 2014, 124, 747–762, doi:10.1007/s10584-014-1128-x. 12. Mendelsohn, R.; Nordhaus, W.D.; Shaw, D. The impact of global warming on agriculture: A Ricardian analysis. Am. Econ. Rev. 1994, 84, 753–771. 13. Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. 14. Miao, R.; Khanna, M.; Huang, H. Responsiveness of Crop Yield and Acreage to Prices and Climate. Am. J. Agric. Econ. 2015, 98, 191–211, doi:10.1093/ajae/aav025. 15. Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. 16. Rosenzweig, C.; Iglesias, A.; Yang, X.; Epstein, P.R.; Chivian, E. Climate Change and Extreme Weather Events; Implications for Food Production, Plant Diseases, and Pests. Glob. Chang. Hum. Health 2001, 2, 90–104, doi:10.1023/A:1015086831467. 17. Cammarano, D.; Ceccarelli, S.; Grando, S.; Romagosa, I.; Benbelkacem, A.; Akar, T.; Al-Yassin, A.; Pecchioni, N.; Francia, E.; Ronga, D. The impact of climate change on barley yield in the Mediterranean basin. Eur. J. Agron. 2019, 106, 1–11, doi:10.1016/j.eja.2019.03.002. 18. Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production since 1980. Science 2011, 333, 616–620, doi:10.1126/science.1204531. 19. Raymundo, R.; Asseng, S.; Robertson, R.; Petsakos, A.; Hoogenboom, G.; Quiroz, R.; Hareau, G.; Wolf, J. Climate change impact on global potato production. Eur. J. Agron. 2018, 100, 87–98, doi:10.1016/j.eja.2017.11.008. 20. Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. 21. Attavanich, W.; McCarl, B.A.; Ahmedov, Z.; Fuller, S.W.; Vedenov, D.V. Effects of climate change on US grain transport. Nat. Clim. Chang. 2013, 3, 638–643, doi:10.1038/nclimate1892. 22. Brown, M.E.; Antle, J.; Backlund, P.; Carr, E.; Easterling, W.; Walsh, M.; Ammann, C.; Attavanich, W.; Barrett, C.; Bellemare, M.; et al. Climate Change, Global Food Security, and the U.S. Food System. Available online: http://www.usda.gov/oce/climate_change/FoodSecurity2015Assessment/FullAssessment.pdf (accessed on 10 May 2019). 23. Brown, M.E.; Carr, E.R.; Grace, K.L.; Wiebe, K.; Funk, C.C.; Attavanich, W.; Backlund, P.; Buja, L. Do markets and trade help or hurt the global food system adapt to climate change? Food Policy 2017, 68, 154–159, doi:10.1016/j.foodpol.2017.02.004. 24. Singels, A.; Jones, M.; Marin, F.; Ruane, A.; Thorburn, P. Predicting Climate Change Impacts on Sugarcane Production at Sites in Australia, Brazil and South Africa Using the Canegro Model. Sugar Tech 2013, 16, 347–355, doi:10.1007/s12355-013-0274-1. 25. Marin, F.R.; Jones, J.W.; Singels, A.; Royce, F.; Assad, E.; Pellegrino, G.Q.; Justino, F. Climate change impacts on sugarcane attainable yield in southern Brazil. Clim. Chang. 2012, 117, 227–239, doi:10.1007/s10584-012-0561-y. 26. Silva, W.K.D.M.; De Freitas, G.P.; Junior, L.M.C.; Pinto, P.A.L.D.A.; Abrahão, R. Effects of climate change on sugarcane production in the state of Paraíba (Brazil): A panel data approach (1990–2015). Clim. Chang. 2019, 154, 195–209, doi:10.1007/s10584-019-02424-7. 27. Baez-Gonzalez, A.D.; Kiniry, J.; Meki, M.N.; Williams, J.R.; Cilva, M.A.; Gonzalez, J.L.R.; Estala, A.M. Potential impact of future climate change on sugarcane under dryland conditions in Mexico. J. Agron. Crop. Sci. 2018, 204, 515–528, doi:10.1111/jac.12278. 28. Ruan, H.; Feng, P.; Wang, B.; Xing, H.; O’Leary, G.J.; Huang, Z.; Guo, H.; Liu, D.L. Future climate change projects positive impacts on sugarcane productivity in southern China. Eur. J. Agron. 2018, 96, 108–119, doi:10.1016/j.eja.2018.03.007. 29. Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: A review of impact on major crops. Food Energy Secur. 2015, 4, 110–132, doi:10.1002/fes3.61. 30. Lobell, D.B.; Burke, M.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science 2008, 319, 607–610, doi:10.1126/science.1152339. 31. Yoshida, K.; Srisutham, M.; Sritumboon, S.; Suanburi, D.; Janjirauttikul, N. Weather-induced economic damage to upland crops and the impact on farmer household income in Northeast Thailand. Paddy Water Environ. 2019, 17, 341–349, doi:10.1007/s10333-019-00729-y. 32. Feng, H.; Babcock, B.A. Impacts of Ethanol on Planted Acreage in Market Equilibrium. Am. J. Agric. Econ. 2010, 92, 789–802, doi:10.1093/ajae/aaq023. 33. Reuters. Thailand’s Sugar Output to Hit Nine-Year Low Due to Drought—Trade Body. 2020. Available online: https://www.reuters.com/article/thailand-sugar-output/thailands-sugar-output-to-hit-nine-year-low-due-to-drought-trade-body-idINKBN1ZU1Z3 (accessed on 13 April 2020). 34. FAO. The Future of Food and Agriculture–Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/99796 |