Besner, Manfred (2020): Harsanyi support levels solutions.
Preview |
PDF
MPRA_paper_101674.pdf Download (498kB) | Preview |
Abstract
We introduce a new class of values with transferable utility for level structures. In these hierarchical structures, each level corresponds to a partition of the player set, which becomes increasingly coarse from the trivial partition containing only singletons to the partition containing only the grand coalition. The new values, called Harsanyi support levels solutions, extend the Harsanyi solutions to level structures. As an important subset of these values, we present the class of weighted Shapley support levels values as a further result. The values from this class extend the weighted Shapley values to level structures and contain the Shapley levels value as a special case. Axiomatizations of the studied classes are provided.
Item Type: | MPRA Paper |
---|---|
Original Title: | Harsanyi support levels solutions |
Language: | English |
Keywords: | Cooperative game ; Level structure ; (Weighted) Shapley (levels) value ; Harsanyi set ; Dividends |
Subjects: | C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C70 - General C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C71 - Cooperative Games |
Item ID: | 101674 |
Depositing User: | Manfred Besner |
Date Deposited: | 16 Jul 2020 17:25 |
Last Modified: | 16 Jul 2020 17:25 |
References: | Álvarez-Mozos, M., & Tejada, O. (2011). Parallel characterizations of a generalized Shapley value and a generalized Banzhaf value for cooperative games with level structure of cooperation. Decision Support Systems, 52(1), 21–27. Álvarez-Mozos, M., van den Brink, R., van der Laan, G., & Tejada, O. (2017). From hierarchies to levels: new solutions for games with hierarchical structure. International Journal of Game Theory, 1–25. Aumann, R.J., Drèze, J., 1974. Cooperative games with coalition structures. International Journal of Game Theory 3, 217–237. Besner, M. (2019). Weighted Shapley hierarchy levels values. Operations Research Letters 47, 122–126. Calvo, E., Lasaga, J. J., & Winter, E. (1996). The principle of balanced contributions and hierarchies of cooperation. Mathematical Social Sciences, 31(3), 171–182. Calvo, E., & Gutiérrez, E. (2013). The Shapley-solidarity value for games with a coalition structure. International game theory review, 15(01), 1350002. Casajus, A. (2010). Another characterization of the Owen value without the additivity axiom. Theory and decision, 69(4), 523–536. Casajus, A., & Huettner, F. (2014). Weakly monotonic solutions for cooperative games. Journal of Economic Theory, 154, 162–172. Derks, J. J., & Haller, H. H. (1999). Null players out? Linear values for games with variable supports. International Game Theory Review, 1(3–4), 301–314. Derks, J., Haller, H., & Peters, H. (2000). The selectope for cooperative games. International Journal of Game Theory, 29(1), 23–38. Dragan, I. C. (1992). Multiweighted Shapley values and random order values. University of Texas at Arlington. Driessen, T. S. H., & Funaki, Y. (1991). Coincidence of and collinearity between game theoretic solutions. Operations-Research-Spektrum, 13(1), 15–30. Gómez-Rúa, M., & Vidal-Puga, J. (2011). Balanced per capita contributions and level structure of coop- eration. Top, 19(1), 167–176. Hammer, P. L., Peled, U. N., & Sorensen, S. (1977). Pseudo-boolean functions and game theory. I. Core elements and Shapley value. Cahiers du CERO, 19, 159–176. Harsanyi, J. C. (1959). A bargaining model for cooperative n-person games. In: A. W. Tucker & R. D. Luce (Eds.), Contributions to the theory of games IV (325–355). Princeton NJ: Princeton University Press. Hart, S., & Mas-Colell, A. (1989). Potential, value, and consistency. Econometrica: Journal of the Econometric Society, 589–614. Joosten, R. (1996). Dynamics, equilibria and values, PhD thesis, Maastricht University, The Netherlands. Kalai, E., & Samet, D. (1987). On weighted Shapley values. International Journal of Game Theory 16(3), 205–222. Khmelnitskaya, A. B., & Yanovskaya, E. B. (2007). Owen coalitional value without additivity axiom. Mathematical Methods of Operations Research, 66(2), 255–261. Levy, A., & Mclean, R. P. (1989). Weighted coalition structure values. Games and Economic Behavior, 1(3), 234–249. McLean, R. P. (1991). Random order coalition structure values. International Journal of Game Theory, 20(2), 109–127. Megiddo, N. (1974). On the nonmonotonicity of the bargaining set, the kernel and the nucleolus of game. SIAM Journal on Applied Mathematics, 27(2), 355–358. Nowak, A. S., & Radzik, T. (1994). A solidarity value for n-person transferable utility games. International journal of game theory, 23(1), 43–48. Nowak, A. S., & Radzik, T. (1995). On axiomatizations of the weighted Shapley values. Games and Economic Behavior, 8(2), 389–405. Owen, G. (1977). Values of games with a priori unions. In Essays in Mathematical Economics and Game Theory, Springer, Berlin Heidelberg, 76–88. del Pozo, M., Manuel, C., González-Arangüena, E., & Owen, G. (2011). Centrality in directed social networks. A game theoretic approach. Social Networks, 33(3), 191–200. Shapley, L. S. (1953a). Additive and non-additive set functions. Princeton University. Shapley, L. S. (1953b). A value for n-person games. H. W. Kuhn/A. W. Tucker (eds.), Contributions to the Theory of Games, Vol. 2, Princeton University Press, Princeton, pp. 307–317. Vasil’ev, V. A. (1975). The Shapley value for cooperative games of bounded polynomial variation. Optimizacija Vyp, 17, 5–27. Vasil’ev, V. A. (1978). Support function of the core of a convex game. Optimizacija Vyp, 21, 30-35. Vasil’ev, V. A. (1981). On a class of imputations in cooperative games, Soviet Mathematics Dokladi 23, 53–57. Vasil’ev, V., & van der Laan, G. (2002). The Harsanyi set for cooperative TU-games. Siberian Advances in Mathematics 12, 97–125. Vidal-Puga, J. (2012). The Harsanyi paradox and the ”right to talk” in bargaining among coalitions. Mathematical Social Sciences, 64(3), 214–224. Weber, R. J. (1988). Probabilistic values for games. In A.E. Roth (Ed.), The Shapley value, essays in honor of L.S. Shapley (pp. 101–119). Cambridge: Cambridge University Press. Winter, E. (1989). A value for cooperative games with levels structure of cooperation. International Journal of Game Theory, 18(2), 227–240. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/101674 |
Available Versions of this Item
-
The weighted Shapley support levels values. (deposited 28 Jun 2018 10:06)
- Harsanyi support levels solutions. (deposited 16 Jul 2020 17:25) [Currently Displayed]
- Harsanyi support levels payoffs and weighted Shapley support levels values. (deposited 22 Apr 2019 17:49)