Shumilov, Andrei (2021): Анализ неопределенности в интегрированных моделях климата и экономики: обзор литературы.
Preview |
PDF
MPRA_paper_110171.pdf Download (1MB) | Preview |
Abstract
This paper presents a survey of studies analyzing various uncertainties in integrated assessment models of the economics of climate change. Applications of techniques for both deterministic models (Monte Carlo simulations, sensitivity analysis) and stochastic IAMs (stochastic dynamic programming) are reviewed.
Item Type: | MPRA Paper |
---|---|
Original Title: | Анализ неопределенности в интегрированных моделях климата и экономики: обзор литературы |
English Title: | Uncertainty analysis in integrated assessment models of the economics of climate change: a literature survey |
Language: | Russian |
Keywords: | greenhouse gases emissions; global warming; integrated assessment models; uncertainty |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D81 - Criteria for Decision-Making under Risk and Uncertainty Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q54 - Climate ; Natural Disasters and Their Management ; Global Warming |
Item ID: | 110171 |
Depositing User: | Andrei Shumilov |
Date Deposited: | 18 Oct 2021 18:40 |
Last Modified: | 18 Oct 2021 18:40 |
References: | Nordhaus W.D., Popp D. What is the Value of Scientific Knowledge? An Application to Global Warming Using the PRICE Model // The Energy Journal. 1997. pp. 1-45. Nordhaus W.D. Managing the global commons: the economics of climate change. Cambridge: MIT Press, 1994. Anthoff D., Tol R.S.J. The uncertainty about the social cost of carbon: A decomposition analysis using fund // Climatic change. 2013. Vol. 117. No. 3. pp. 515-530. Anderson B. et al. Uncertainty in climate change modeling: can global sensitivity analysis be of help? // Risk analysis. 2014. Vol. 34. No. 2. pp. 271-293. Saltelli A. et al. Global Sensitivity Analysis—The Primer. Chichester: John Wiley & Sons, 2008. Соболь И. М. Глобальные показатели чувствительности для изучения нелинейных математических моделей // Математическое моделирование. 2005. Т. 17. № 9. С. 43-52. Borgonovo E. A new uncertainty importance measure // Reliability Engineering & System Safety. 2007. Vol. 92. No. 6. pp. 771-784. Nordhaus W.D. Dealing With Uncertainty In Climate-Change Policy // In: A Question of Balance: Weighing the Options on Global Warming Policies. Yale University Press, 2008. pp. 123-147. Gillingham K. et al. Modeling uncertainty in integrated assessment of climate change: A multimodel comparison // Journal of the Association of Environmental and Resource Economists. 2018. Vol. 5. No. 4. pp. 791-826. Nordhaus W.D. Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches // Journal of the Association of Environmental and Resource Economists. 2014. No. 1. pp. 273-312. Manne A., Mendelsohn R., Richels R. MERGE: A model for evaluating regional and global effects of GHG reduction policies // Energy policy. 1995. Vol. 23. No. 1. pp. 17-34. Bosetti V., Carraro C., Galeotti M., Massetti E., Tavoni M. WITCH: A World Induced Technical Change Hybrid Model // Energy Journal. 2006. Vol. 27. pp. 13-37. Chen Y.-H., Paltsev S., Reilly J.M., Morris J.F., Babiker M.H. Long-Term Economic Modelling for Climate Change Assessment // Economic Modelling. 2016. Vol. 52. No. 8. pp. 867-883. Calvin K. et al. GCAM Documentation. College Park, MD: Joint Global Change Research Institute, 2011. Anthoff D., Tol R. On International Equity Weights and National Decision Making on Climate Change // Journal of Environmental Economics and Management. 2010. Vol. 60. No. 1. pp. 14-20. Marangoni G. et al. Sensitivity of projected long-term CO 2 emissions across the Shared Socioeconomic Pathways // Nature Climate Change. 2017. Vol. 7. No. 2. pp. 113-117. Neill B.C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways // Climatic change. 2014. Vol. 122. No. 3. pp. 387-400. Capros P. et al., "GEM-E3 model documentation," JRC Scientific and Policy Reports, 26034, 2013. Stehfest E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0. Model Description and Policy Applications. PBL Netherlands Environmental Assessment Agency, 2014. Waisman H., Guivarch C., Grazi F., Hourcade J.C. The Imaclim-R model: infrastructures, technical inertia and the costs of low carbon futures under imperfect foresight // Climatic Change. 2012. Vol. 114. pp. 101–120. Fricko O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century // Global Environmental Change. 2017. Vol. 42. pp. 251-267. Anandarajah G., Pye S., Usher W., Kesicki F., Mcglade C. TIAM-UCL Global Model Documentation. UK Energy Research Centre, 2011. Emmerling J. et al. The WITCH 2016 model-documentation and implementation of the shared socioeconomic pathways. 2016. Riahi K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview // Global Environmental Change. 2017. Vol. 42. pp. 153-168. Borgonovo E. Sensitivity analysis with finite changes: An application to modified EOQ models // European Journal of Operational Research. 2010. Vol. 200. No. 1. pp. 127-138. Kelly D.L., Kolstad C.D. Bayesian learning, growth, and pollution // Journal of economic dynamics and control. 1999. Vol. 23. No. 4. pp. 491-518. Jensen S., Traeger C.P. Optimal climate change mitigation under long-term growth uncertainty: Stochastic integrated assessment and analytic findings // European Economic Review. 2014. Vol. 69. pp. 104-125. Crost B., Traeger C.P. Optimal climate policy: uncertainty versus Monte Carlo // Economics Letters. 2013. Vol. 120. No. 3. pp. 552-558. Lemoine D., Traeger C. Watch your step: optimal policy in a tipping climate // American Economic Journal: Economic Policy. 2014. Vol. 6. No. 1. pp. 137-166. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/110171 |