Santeramo, Fabio Gaetano and Delsignore, Monica and Imbert, Enrica and Lombardi, Mariarosaria (2022): The future of the EU bioenergy sector: economic, environmental, social, and legislative challenges.
Preview |
PDF
MPRA_paper_115454.pdf Download (486kB) | Preview |
Abstract
The bioenergy sector is becoming of increasing interest: the European Union (EU) is not an exception, as, indeed, is in need of solutions to face one of the worst energy crises of the last century. The sector’s growth faces numerous challenges. The main use of energy crops, as feedstock, generates stiff competition on the use of land for food and energy purposes. The production of bioenergy has relevant environmental implications in terms greenhouse gas emissions. The social aspects related to the bioenergy sector are also potential obstacles to its development. These pressing issues for policymakers call for a better understanding on how national and international laws should regulate the growth of the bioenergy sector. Flying over the economic, environmental, social, and legislative aspects faced by the bioenergy sector, we conclude on threads, opportunities and priorities that should be considered for its development and propose directions for future studies.
Item Type: | MPRA Paper |
---|---|
Original Title: | The future of the EU bioenergy sector: economic, environmental, social, and legislative challenges |
Language: | English |
Keywords: | Bioenergy, European Union, Impact, Land use, Law, Sustainability |
Subjects: | K - Law and Economics > K3 - Other Substantive Areas of Law > K32 - Environmental, Health, and Safety Law Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q18 - Agricultural Policy ; Food Policy Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q42 - Alternative Energy Sources |
Item ID: | 115454 |
Depositing User: | Prof. Fabio Gaetano Santeramo |
Date Deposited: | 26 Nov 2022 08:36 |
Last Modified: | 26 Nov 2022 08:36 |
References: | 1. Ahlgren S. and Di Lucia L., 2014, Indirect land use changes of biofuel production – a review of modelling efforts and policy developments in the European Union, Biotechnology for Biofuels 2014, 7:3 2. Ammanati L., The governance of renewable energy. The Renewables Directive for the period after 2020, in in A. De Luca – V. Lubello (eds), Renewable Energy and European Energy Market: European and International Legal Perspectives, Wolter Kluwer, 2018. 3. Anderson L. S., Davies C. E., Moss D., 1996, Annex I Integrated Environmental Assessment of Biodiversity, THE UN CONVENTION ON BIOLOGICAL DIVERSITY, Follow-up in EEA Member Countries 4. Ayodele, B. V., Alsaffar, M. A., & Mustapa, S. I. (2020). An overview of integration opportunities for sustainable bioethanol production from first-and second-generation sugar-based feedstocks. Journal of Cleaner Production, 245, 118857. 5. Bawadi A., Syed Anuar Faua’ad Syed Muhammad, Zahra Shokravi, Shahrul Ismail, Khairul Anuar Kassim, Azmi Nik Mahmood, Md Maniruzzaman A. Aziz, Fourth generation biofuel: A review on risks and mitigation strategies, Renewable and Sustainable Energy Reviews, Volume 107, 2019, 37-50. 6. Baker, J., Sheate W.R., Phillips P., Eales R., 2013, Ecosystem services in environmental assessment — Help or hindrance? Environmental Impact Assessment Review 40(2013) 3-13. 7. Beall, E. (2012). Smallholders in global bioenergy value chains and certification. Environment and Natural Resources Management Working Paper, 50. 8. Berger M., Pfister S., Bach V., Finkbeiner M., 2015. Saving the Planet’s Climate or Water Resources? The Trade-Off between Carbon and Water Footprints of European Biofuels, Sustainability, 7(6), 1-19, May. 9. Bioenergy, I. E. A. (2010). Bioenergy, land use change and climate change mitigation. Report for policy advisors and policy makers. IEA Bioenergy: ExCo, 3. 10. Bogdanovic, J., Heberlein, C., Simonett, O., Stuhlberger, C. (2008). Kick the Habit: A UN Guide to Climate Neutrality. UNEMG, UNEP/GRID-Arendal, pp. 1- 200. ISBN: 978-92-807-2926-9. 11. Brandao M., Azzi E., Novaes R.M.L., Cowie A., 2021, The modelling approach determines the carbon footprint of biofuels: The role of LCA in informing decision makers in government and industry, Cleaner Environmental Systems, 2(2021)100027 12. Burkhard, B., de Groot, R., Costanza, R., Seppelt, R., Jørgensen, S.E., Potschin, M., 2012. Solutions for sustaining natural capital and ecosystem services. Ecological Indicators 21: 1–6. 13. Busu, M. (2019). Assessment of the impact of bioenergy on sustainable economic development. Energies, 12(4), 578. 14. Cadillo-Benalcazar J., Bukkens S., Ripa M., Giampietro M., Why does the European Union produce biofuels? Examining consistency and plausibility in prevailing narratives with quantitative storytelling, in Energy Research & Social Science, Volume 71, 2021, 101810. 15. Cai, X., Zhang, X., & Wang, D. (2010). Land availability for biofuel production. Environmental Science & Technology, 45(1), 334-339. 16. Cambero, C., & Sowlati, T. (2016). Incorporating social benefits in multi-objective optimization of forest-based bioenergy and biofuel supply chains. Applied Energy, 178, 721-735. 17. Carneiro, M.L.N.M., Pradelle F., Braga S. L., Gomes, M.S.P., Martins A.R. F.A., Turkovics F., Pradelle R. N.C., 2017. Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA), Renewable and Sustainable Energy Reviews, 73(C): 632-653. 18. Cavalett O., Ortega E., 2010, Integrated environmental assessment of biodiesel production from soybean in Brazil, Journal of Cleaner Production, Volume 18, Issue 1, January 2010, Pages 55-70 19. Chen, X., & Önal, H. (2016). Renewable energy policies and competition for biomass: Implications for land use, food prices, and processing industry. Energy Policy, 92, 270-278. 20. Collotta M., Champagne P., Tomasoni G., Alberti M., Busi L., Mabee W., 2019, Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective, Renewable and Sustainable Energy Reviews 115 (2019) 109358 21. Constantin, C., Luminița, C., & Vasile, A. J. (2017). Land grabbing: A review of extent and possible consequences in Romania. Land use policy, 62, 143-150 22. Correa D. F., Beyer H. L., Fargione J. E., Hill J. D., Possingham H. P., Thomas-Hall S. R., Schenk Peer M., 2019, Towards the implementation of sustainable biofuel production systems, Renewable and Sustainable Energy Reviews 107 (2019) 250–263. 23. Correa D.F., Beyer H.L., Possingham H.P., Thomas-Hall S.R., Schenk P.M., 2017, Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels, Renewable and Sustainable Energy Reviews 74 (2017) 1131–1146. 24. Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J.G.J., Vignati, E., 2020, Fossil CO2 emissions of all world countries – 2020 Report, EUR 30358 EN, Publications Office of the European Union, Luxembourg, 2020, ISBN 978-92-76-21515-8 25. Creutzig, F., Ravindranath, N. H., Berndes, G., Bolwig, S., Bright, R., Cherubini, F., ... & Masera, O. (2015). Bioenergy and climate change mitigation: an assessment. Gcb Bioenergy, 7(5), 916-944. 26. Danielsen F., H Beukema, N Burgess, F Parish, C Brühl, P Donald, D Murdiyarso,B Phalan, L Reijnders, M Struebig and E Fitzherbert, 2009, Biofuel plantations on forested lands: Double jeopardy for biodiversity and climate, IOP Conf. Series: Earth and Environmental Science 6 (2009) 242014 27. Danielsen, F., Beukema, H., Burgess, N.D., Parish, F., Brühl, C.A., Donald, P.F., ... & Fitzherbert, E.B. (2009). Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conservation Biology, 23(2), 348-358. 28. de Andrade Junior, M.A.U., Valin, H., Soterroni, A.C., Ramos, F.M., & Halog, A. (2019). Exploring future scenarios of ethanol demand in Brazil and their land-use implications. Energy Policy, 134, 110958. 29. Delta, B.C. (2011). Review of IFPRI Reports on Land Use Change from European Biofuel Policies. Brussels: European Biodiesel Board. 30. Das M., Schiff A.D. (2020) Bioenergy, Consumer Decision-Making and Shaping the River Flow. In: Mitra M., Nagchaudhuri A. (eds) Practices and Perspectives in Sustainable Bioenergy. Green Energy and Technology. Springer, New Delhi.’ 31. D'Adamo, I., Falcone, P. M., Imbert, E., & Morone, P. (2020). A Socio-economic Indicator for EoL Strategies for Bio-based Products. Ecological Economics, 178, 106794. 32. D’Adamo, I., Falcone, P. M., Imbert, E., & Morone, P. (2020). Exploring regional transitions to the bioeconomy using a socio-economic indicator: The case of Italy. Economia Politica, 1-33. 33. Demirbas A., 2009, Political, economic and environmental impacts of biofuels: A review, Applied Energy 86 (2009) S108–S117 34. Devine-Wright, P. (2007). Reconsidering public attitudes and public acceptance of renewable energy technologies: a critical review. Beyond Nimbyism: a multidisciplinary investigation of public engagement with renewable energy technologies, 15. 35. Diaz-Chavez, M.M. Morese, M. Colangeli, A. Fallot, M.A.F.D. de Moraes, S. Olényi, P. Osseweijer, L.M. Sibanda, M. Mapako Social ConsiderationsBioenergy & Sustainability: Bridging the Gaps, 72, SCOPE, Paris, France (2015), pp. 528-552(ISBN 978-2-9545557-0-6) 36. Domac, J., Richards, K., & Risovic, S. (2005). Socio-economic drivers in implementing bioenergy projects. Biomass and bioenergy, 28(2), 97-106. 37. Dominguez-Faus R, Powers SE, Burken JG, Alvarez PJ. 2009 The water footprint of biofuels: a drink or drive issue? Environ. Sci. Technol. 43, 3005–3010. 38. Edwards, R., Padella, M., Giuntoli, J., Koeble, R., O’Connell, A., Bulgheroni, C., & Marelli, L. (2017). Definition of input data to assess GHG default emissions from biofuels in EU legislation. Version 1c – July 2017, EUR 28349 EN, Publications Office of the European Union, Luxembourg. 39. Ekener, E., Hansson, J., & Gustavsson, M. (2018). Addressing positive impacts in social LCA— discussing current and new approaches exemplified by the case of vehicle fuels. The International Journal of Life Cycle Assessment, 23(3), 556-568. 40. Elbehri, A., Segerstedt, A., & Liu, P. (2013). Biofuels and the Sustainability Challenge: a Global Assessment of Sustainability Issues, Trends and Policies for Biofuels and Related Feedstocks. Food and Agriculture Organization of the United Nations (FAO). 41. Elshout PMF, van Zelm R, van der Velde M, Steinmann Z, Huijbregts MAJ. 2019, Global relative species loss due to first-generation biofuel production for the transport sector. Glob Change Biol Bioenergy. 2019 Jun;11(6):763-772. 42. Englund, O., Börjesson, P., Berndes, G., Scarlat, N., Dallemand, J.F., Grizzetti, B., ... & Fahl, F. (2020). Beneficial land use change: Strategic expansion of new biomass plantations can reduce environmental impacts from EU agriculture. Global Environmental Change, 60, 101990. 43. European Commission (2019). Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the status of production expansion of relevant food and feed crops worldwide. European Commission, Brussels, March 13, 2019. 44. European Commission, 2009. Directive 2009/28/EC on the promotion of the use of energy from renewable sources. Official Journal of the European Union, L140:16–62. 45. European Commission, Directive (EU) 2018/2001 of the European Parliament and of The Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast), Off. J. Eur. Union. L328 (2018) 82–209. https://eur-lex.europa.eu/eli/dir/2018/2001/oj. 46. European Commission, 2018, Directive (EU 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources, Official Journal of the European Union of 21.12.2018, L 328:82-209. 47. European Commission, 2019. Report from the Commission to the European parliament, the council, the European economic and social committee and the Committee of the regions on the status of production expansion of relevant food and feed crops worldwide, Brussels, 13.3.2019 COM(2019) 142 final. 48. European Commission, 2019. COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE EUROPEAN COUNCIL, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS. The European Green Deal. 49. European Commission, 2020. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions, Stepping up Europe’s 2030 climate ambition. Investing in a climate-neutral future for the benefit of our people, Brussels, 17.9.2020 COM(2020) 562 final. 50. EU (2018). Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Official Journal of the European Union, 5, 82-209. 51. Falcone, P. M., & Imbert, E. (2018). Social life cycle approach as a tool for promoting the market uptake of bio-based products from a consumer perspective. Sustainability, 10(4), 1031. 52. Falcone, P. M., Imbert, E., Sica, E., & Morone, P. (2021). Towards a bioenergy transition in Italy? Exploring regional stakeholder perspectives towards the Gela and Porto Marghera biorefineries. Energy Research & Social Science, 80, 102238.. dovrebbe esserci forse anche definizione di bioenergy. 53. FAO (Food and Agriculture Organization), 2013, Biofuels and sustainability challenge: a global assessment of sustainability issues, trends and policies for biofuels and related feedstocks. Available at: http://www.fao.org/docrep/017/i3126e/i3126e.pdf (accessed 28 December 2020). 54. Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319(5867), 1235-1238. 55. Feehan J., Petersen J.-E., 2003, A framework for evaluating the environmental impact of biofuel use, OECD Workshop on biomass and agriculture, European Environment Agency, Copenhagen. 56. Fingerman, K. R., Berndes, G., Orr, S., Richter, B. D., Vugteveen, P. (2011). Impact assessment at the bioenergy‐water nexus. Biofuels, Bioproducts and Biorefining, 5(4), 375-386. 57. Florin, M. J., Van De Ven, G. W. J., & Van Ittersum, M. K. (2014). What drives sustainable biofuels? A review of indicator assessments of biofuel production systems involving smallholder farmers. Environmental Science & Policy, 37, 142-157. 58. Fytili, D., & Zabaniotou, A. (2017). Social acceptance of bioenergy in the context of climate change and sustainability–A review. Current Opinion in Green and Sustainable Chemistry, 8, 5- 9. 59. Galan-del-Castillo, E. and Velazquez, E. (2010) ‘From water to energy: The virtual water content and water footprint of biofuel consumption in Spain’, Energy Policy, vol 38, 3, pp1345– 1352 60. Garcia D.J., You F., 2018, Addressing global environmental impacts including land use change in life cycle optimization: Studies on biofuels, Journal of Cleaner Production 182 (2018) 313- 330. 61. Gasparatos, A., Romeu-Dalmau, C., von Maltitz, G., Johnson, F. X., Jumbe, C. B. and Willis, K., eds. (2018). Using an ecosystem services perspective to assess biofuel sustainability. Special Issue, Biomass and Bioenergy, 114. 1–174) 62. Gerbens-Leenes P.W., 2017, Bioenergy water footprints, comparing first, second and third generation feedstocks for bioenergy supply in 2040, European Water 59: 373-380, 2017. 63. Gerbens-Leenes PW, Lienden ARv, Hoekstra AY, van der Meer TH. 2012, Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030. Global Environmental Change 2012;22:764–75. 64. Gianfreda A, L. Parisio, M. Pelagatti, A review of balancing costs in Italy before and after RES introduction, in Renewable and Sustainable Energy Reviews, Volume 91, 2018, Pages 549-563, ISSN 1364-0321. 65. Gissi E., Gaglio M. and Reho M., 2016, Sustainable energy potential from biomass through ecosystem services trade-off analysis: the case of the Province of Rovigo (Northern Italy, Ecosystem Services, 18 (2016), pp. 1-19, https://doi.org/10.1016/j.ecoser.2016.01.004 66. Gohin, A., & Chantret, F. (2010). The long-run impact of energy prices on world agricultural markets: The role of macro-economic linkages. Energy Policy, 38(1), 333-339. 67. Gomiero T., 2018, Large-scale biofuels production: A possible threat to soil conservation and environmental services, Applied Soil Ecology 123 (2018) 729–736 68. Haile, M.G., Kalkuhl, M., & von Braun, J. (2016). Worldwide Acreage and Yield Response to International Price Change and Volatility: A Dynamic Panel Data Analysis for Wheat, Rice, Corn, and Soybeans. American Journal of Agricultural Economics, 98 (1), 172–90. 69. Hall C.A.S, Lambert J.G., Balogh S. B., 2014. EROI of different fuels and the implications for society, Energy Policy, vol. 64(C):141-152. 70. Hein, L., & Leemans, R. (2012). The impact of first-generation biofuels on the depletion of the global phosphorus reserve. Ambio, 41(4), 341–349. https://doi.org/10.1007/s13280-012-0253- x 71. Hess, P., M. Johnston, B. Brown-Steiner, T. Holloway, J.B.d. Andrade, and P. Artaxo. 2009. Air quality issues associated with biofuel production and use. In: Biofuels: Environmental consequences and interactions with changing land use. R.W. Howarth and S. Bringezu, eds. Cornell University, Ithaca, Ny. p. 169–194. 72. Hoefnagels R., Smeets E., Faaij A., 2010. Greenhouse gas footprints of different biofuel production systems, Renewable and Sustainable Energy Reviews, 14(7), pages 1661- 1694, Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M., Mekonnen, M.M., 2011. The Water Footprint Assessment Manual: Setting the Global Standard. Earthscan, London, UK. 73. Holland, R. A., Eigenbrod, F., Muggeridge, A., Brown, G., Clarke, D., & Taylor, G. (2015). A synthesis of the ecosystem services impact of second generation bioenergy crop production. Renewable and Sustainable Energy Reviews, 46, 30-40. 74. Humalisto, N.H. (2015). Climate policy integration and governing indirect land-use changes— Actors in the’EU's biofuel policy-formulation. Land Use Policy, 45, 150-158. 75. IEA Bioenergy, 2011, Using a Life Cycle Assessment Approach to Estimate the Net Greenhouse Gas Emissions of Bioenergy, IEA Bioenergy: ExCo:2011:03. 76. IEA, 2019, Transport sector CO2 emissions by mode in the Sustainable Development Scenario, 2000-2030, IEA, Paris, Available at: https://www.iea.org/data-and-statistics/charts/transport- sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030 77. IEA, 2020, Transport in biofuels, in Renewables 2020: Analysis and forecast to 2025, Report of November 2020, Avaliable at: https://www.iea.org/reports/renewables-2020/transport- biofuels#abstract (accessed 13 Janaury 2021) 78. Imbert E and Falcone P.M. “Social Assessment”, in Transition Towards a Sustainable Bio-based Economy, Royal Society of Chemistry, (2020). 79. Ingrao C., Rana R., Tricase C., Lombardi M., (2015). Application of Carbon Footprint to an agro-biogas supply chain in Southern Italy. Applied Energy.149, 75-88. 80. International Organization for Standardization (ISO), 2006. Environmental manageme–t - life cycle assessment — principles and framework. ISO, p. 14040. 81. Khanna, M., Chen, L., Basso, B., Cai, X., Field, J. L., Guan, K., ... & Zipp, K. Y. (2021). Redefining marginal land for bioenergy crop production. GCB Bioenergy, 13(10), 1590-1609. 82. Kim, H., & Moschini, G. (2018). The dynamics of supply: US corn and soybeans in the biofuel era. Land Economics, 94(4), 593-613. 83. Kingstone, V. Heyvaert, A. Cavoski, (2017) Climate Change as a Multi-Level Governance Challenge: The Example of Renewable Energy, in European Environmental Law, S. Cambridge University Press 2017, 275 84. Koçar, G., & Civaş, N. (2013). An overview of biofuels from energy crops: Current status and future prospects. Renewable and Sustainable Energy Reviews, 28, 900-916. 85. Kuchler, M. (2014). Sweet dreams (are made of cellulose): Sociotechnical imaginaries of second-generation bioenergy in the global debate. Ecological Economics, 107, 431-437. 86. Jeswani H.K., Chilvers A., Azapagic A. 2020 Environmental sustainability of biofuels: a review. Proc. R. Soc. A 476: 20200351. 87. Jusys, T. (2017) A confirmation of the indirect impact of sugarcane on deforestation in the Amazon, Journal of Land Use Science, 12:2-3, 125-137. 88. Kazamia E. and Smith A.G., 2014, Assessing the environmental sustainability of biofuels, Trends in Plant Science, October 2014, Vol. 19, No. 10 89. Ladu, L., & Blind, K. (2017). Overview of policies, standards and certifications supporting the European bio-based economy. Current opinion in green and sustainable chemistry, 8, 30-35. 90. Leibensperger, C., Yang, P., Zhao, Q., Wei, S., & Cai, X. (2021). The synergy between stakeholders for cellulosic biofuel development: Perspectives, opportunities, and barriers. Renewable and Sustainable Energy Reviews, 137, 110613. 91. Lee, R., and J.M. Lavoie. 2013. From first to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 3(2):6–11. 92. Lee, G. E., Loveridge, S., & Joshi, S. (2017). Local acceptance and heterogeneous externalities of biorefineries. Energy Economics, 67, 328-336. 93. Lehtonen, O., & Okkonen, L. (2016). Socio-economic impacts of a local bioenergy-based development strategy–The case of Pielinen Karelia, Finland. Renewable energy, 85, 610-619. 94. Leonhardt, R., Noble, B., Poelzer, G., Fitzpatrick, P., Belcher, K., & Holdmann, G. (2022). Advancing local energy transitions: A global review of government instruments supporting community energy. Energy Research & Social Science, 83, 102350. 95. Liew W.H., Hassim, M. H., Ng D. K. S, 2014, Review of evolution, technology and sustainability assessments of biofuel production, Journal of Cleaner Production 71 (2014) 11- 29. 96. Lombardi M., Rana R., Tricase C., Ingrao C. (2014). Sustainability criteria and certification schemes of biofuels in the European Union, in: W. Adamczyk (ed.) Commodity Science in Research and Practi–e - Towards sustainable development, Foundation of the Cracow University of Economics, Cracow, 127-137, ISBN: 978-83-62511-38-9. 97. Lopolito A., Barbuto, A., Santeramo, F. G. (2022) The role of network characteristics of the innovation spreaders in agriculture. Bio-Based and Applied Economics. 98. Ludovico, N., Dessi, F., & Bonaiuto, M. (2020). Stakeholders Mapping for Sustainable Biofuels: An Innovative Procedure Based on Computational Text Analysis and Social Network Analysis. Sustainability, 12(24), 10317. 99. Macombe, C., Leskinen, P., Feschet, P., & Antikainen, R. (2013). Social life cycle assessment of biodiesel production at three levels: a literature review and development needs. Journal of Cleaner Production, 52, 205-216Magar, S. B., Pelkonen, P., Tahvanainen, L., Toivonen, R., & Toppinen, A. (2011). Growing trade of bioenergy in the EU: Public acceptability, policy harmonization, European standards and certification needs. Biomass and Bioenergy, 35(8), 3318-3327. 100.Mehmood, M. A., Ibrahim, M., Rashid, U., Nawaz, M., Ali, S., Hussain, A., & Gull, M. (2017). Biomass production for bioenergy using marginal lands. Sustainable Production and Consumption, 9, 3-21. 101.Maltsoglou, I., & Khwaja, Y. (2010). Bioenergy and food security. The BEFS analysis for Tanzania. Rome: FAO. 102.Malins, C., Searle, S., & Baral, A. (2014). A Guide for the Perplexed to the Indirect Effects of Biofuel Production. International Council on Clean Transportation (ICCT) report. 103.Malone, E., Hultman, N. E., Anderson, K. L., & Romeiro, V. (2017). Stories about ourselves: How national narratives influence the diffusion of large-scale energy technologies. Energy research & social science, 31, 70-76. 104.Manik, Y., Leahy, J., & Halog, A. (2013). Social life cycle assessment of palm oil biodiesel: a case study in Jambi Province of Indonesia. The International Journal of Life Cycle Assessment, 18(7), 1386-1392. 105.Martinkus, N., Latta, G., Rijkhoff, S. A., Mueller, D., Hoard, S., Sasatani, D., ... & Wolcott, M. (2019). A multi-criteria decision support tool for biorefinery siting: Using economic, environmental, and social metrics for a refined siting analysis. Biomass and Bioenergy, 128, 105330 106.Mat Aron, N. S., Khoo, K. S., Chew, K. W., Show, P. L., Chen, W. H., & Nguyen, T. H. P. (2020). Sustainability of the four generations of biofuels–A review. International Journal of Energy Research, 44(12), 9266-9282. 107.Mattioda, R. A., Tavares, D. R., Casela, J. L., & Junior, O. C. (2020). Social life cycle assessment of biofuel production. In Biofuels for a More Sustainable Future (pp. 255-271). Elsevier 108.McCormick, K. (2010). Communicating bioenergy: a growing challenge. Biofuels, Bioproducts and Biorefining, 4(5), 494-502 109.McCormick, K., & Kåberger, T. (2007). Key barriers for bioenergy in Europe: economic conditions, know-how and institutional capacity, and supply chain co-ordination. Biomass and Bioenergy, 31(7), 443-452. 110.Meyer M. A. and Leckert F. S., 2018, A systematic review of the conceptual differences of environmental assessment and ecosystem service studies of biofuel and bioenergy production, Biomass and Bioenergy 114 (2018) 8-17. 111.Miettinen, J., Hooijer, A., Tollenaar, D., Page, S., Malins, C., Vernimmen, R., Shi, C., & Liew, S. C. (2012). Historical analysis and projection of oil palm plantation expansion on peatland in Southeast Asia. Washington, DC: International Council on Clean Transportation (ICCT). 112.Milner S, Holland R.A., Lovett A., Sinnenberg A.G., Hastings A. Smith P., Wang S., Taylor G., 2016, Potential impacts on ecosystem services of land use transitions to second-generation bioenergy crops in GB, GCB - Bioenery, 8 (2) (2016), 317-333 http://doi.org/10.1111/gcbb.12263 113.Murphy, David J., and Charles A. S. Hall. 2010. Year in review—EROI or energy return on (energy) invested. Annals of New York Academy of Sciences 1185: 102–18. 114.Muscat, A., de Olde, E. M., de Boer, I. J., & Ripoll-Bosch, R. (2020). The battle for biomass: A systematic review of food-feed-fuel competition. Global Food Security, 25, 100330. 115.OECD/FAO 2020, Chapter 9. Biofuels, in OECD-FAO AGRICULTURAL OUTLOOK 2020- 2029, pp. 196-208, Available at: http://www.fao.org/3/ca8861en/Biofuels.pdf (accessed 27 December 2020). 116.OECD-FAO (2019). OECD-FAO Agricultural Outlook 2019-2028. Organisation for Economic Cooperation and Development, and Food and Agricultural Organization of the United Nations. 117.OPEC Fund for International Development (OFID), 2009, BIOFUELS and FOOD SECURITY. Implications of an accelerated biofuels production- Summary of the OFID study prepared by IIASA (International Institute for Applied Systems Analys, OFID PAMPHLET SERIES, Vienna, Austria March 2009 , Parkring 8, A-1010 Vienna, Austria. 118.Panoutsou, C., & Chiaramonti, D. (2020). Socio-Economic Opportunities from Miscanthus Cultivation in Marginal Land for Bioenergy. Energies, 13(11), 2741. 119.Panoutsou, C., Germer, S., Karka, P., Papadokostantakis, S., Kroyan, Y., Wojcieszyk, M., ... & Landalv, I. (2021). Advanced biofuels to decarbonise European transport by 2030: Markets, challenges, and policies that impact their successful market uptake. Energy Strategy Reviews, 34, 100633. 120.Patzek-L.J., Patzek, T.W., The Disastrous Local and Global Impacts of Tropical Biofuel Production, Energy Tribune, pp. 19-22, March 2007 121.Pehlken, A., Madena, K., Aden, C., & Klenke, T. (2016). Forming stakeholder alliances to unlock alternative and unused biomass potentials in bioenergy regions. Journal of Cleaner Production, 110, 66-77. 122.Peri, M., & Baldi, L. (2013). The effect of biofuel policies on feedstock market: Empirical evidence for rapeseed oil prices in EU. Resource and Energy Economics, 35, 118-37. 123.Petersen, E., Höglund, E. J., Finnveden, G. (2014). Screening potential social impacts of fossil fuels and biofuels for vehicles. Energy Policy, 73, 416-426 124.Pimentel D., T.W. Patzek, Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower, Natural Resources Research, pp. 65 ss. Kluwer Academic Publishers, 2005; 125.Pitkänen, K., Antikainen, R., Droste, N., Loiseau, E., Saikku, L., Aissani, L., ... & Thomsen, M. (2016). What can be learned from practical cases of green economy?–studies from five European countries. Journal of Cleaner Production, 139, 666-676. 126.Popp, J., Lakner, Z., Harangi-Rakos, M., & Fari, M. (2014). The effect of bioenergy expansion: Food, energy, and environment. Renewable and Sustainable Energy Reviews, 32, 559-578. 127.Prosperi, M., Lombardi, M., & Spada, A. (2019). Ex ante assessment of social acceptance of small-scale agro-energy system: A case study in southern Italy. Energy Policy, 124, 346-354. 128.Rana R., Ingrao C., Lombardi M., Tricase C. (2016). Greenhouse gas emissions of an agro- biogas energy system: Estimation under the Renewable Energy Directive, Science of the Total Environment 550 (2016) 1182–1195. 129.Rana R., Lombardi M., Giungato P., Tricase C. (2020). Trends in Scientific Literature on Energy Return Ratio of Renewable Energy Sources for Supporting Policymakers, Adm. Sci. 2020, 10, 21 130.Ripa, M., Cadillo-Benalcazar, J. J., & Giampietro, M. (2021). Cutting through the biofuel confusion: A conceptual framework to check the feasibility, viability and desirability of biofuels. Energy Strategy Reviews, 35, 100642. 131.Ritchie H., 2020, Sector by sector: where do global greenhouse gas emissions come from?, September 18, 2020. Available at https://ourworldindata.org/ghg-emissions-by-sector (accessed 14 January 2021) 132.Ronzon, T., Piotrowski, S., Tamosiunas, S., Dammer, L., Carus, M., & M’barek, R. (2020). Developments of economic growth and employment in bioeconomy sectors across the EU. Sustainability (Switzerland), 12(11), 4507. 133.Rossi, A., & Lambrou, Y. (2009). Making sustainable biofuels work for smallholder farmers and rural households. FAO: Roma. 134.Ruggiero, S., Onkila, T., & Kuittinen, V. (2014). Realizing the social acceptance of community renewable energy: A process-outcome analysis of stakeholder influence. Energy Research & Social Science, 4, 53-63. 135.Ruiz, P., Sgobbi, A., Nijs, W., Thiel, C., Dalla Longa, F., Kober, T., & Hengeveld, G. (2015). The JRC-EU-TIMES model. Bioenergy potentials for EU and neighbouring countries. JRC Science for Policy Report, European Commission. 136.Rutz, D. (2014). Socio-economic impacts of bioenergy production. R. Janssen (Ed.). Springer International Publishing. 137.Sala, O. E., Sax, D., and Leslie, L. (2009) Biodiversity Consequences of Increased Biofuel Production. In: R. W. Howarth and S. Bringezu (eds.) Biofuels: Environmental Consequences and Interactions with Changing Land Use. Report of t35nternationalnal SCOPE Biofuels Project. http://cip.cornell.edu/biofuels/. 138.Sakai, P., Afionis, S., Favretto, N., Stringer, L. C., Ward, C., Sakai, M., ... & Afzal, N. (2020). Understanding the Implications of Alternative Bioenergy Crops to Support Smallholder Farmers in Brazil. Sustainability, 12(5), 2146. 139.Sanz-Hernández, A., Esteban, E., & Garrido, P. (2019). Transition to a bioeconomy: Perspectives from social sciences. Journal of cleaner production, 224, 107-119. 140.Sandesh K. And Ujwal P., 2021. Trends and perspectives of liquid biofuel – Process and industrial viability, Energy Conversion and Management: X, Available online 7 January 2021, 100075, https://doi.org/10.1016/j.ecmx.2020.100075 141.Santeramo, F.G., & Searle, S. (2019). Linking soy oil demand from the US Renewable Fuel Standard to palm oil expansion through an analysis on vegetable oil price elasticities. Energy Policy, 127, 19-23. 142.Santeramo, F.G., & Searle, S. (2020). Reply to Taheripour, Delgado and Tyner (2020). Energy Policy, 111460. 143.Santeramo, F.G., Di Gioia, L., & Lamonaca, E. (2021a). Price responsiveness of supply and acreage in the EU vegetable oil markets: Policy implications. Land Use Policy, 101, 105102. 144.Santeramo, F.G., Lamonaca, E., Tappi, M., & Di Gioia, L. (2019). Considerations on the environmental and social sustainability of animal-based policies. Sustainability, 11(8), 2316. 145.Santeramo, F.G., Lamonaca, E., Tappi, M., & Di Gioia, L. (2020). On the environmental impacts of voluntary animal-based policies in the EU: Technical and political considerations. Environmental Science & Policy, 111, 55-62. 146.Santeramo, F. G., Lamonaca, E., & Miljkovic, D. (2021). Agri-food trade and climate change. Agri-food trade and climate change, 139-156. 147.Schrama, M., Vandecasteele, B., Carvalho, S., Muylle, H., & van der Putten, W. H. (2016). Effects of first‐and second‐generation bioenergy crops on soil processes and legacy effects on a subsequent crop. gCb bioenergy, 8(1), 136-147. 148.Schubert, R., & Blasch, J. (2010). Sustainability standards for bioenergy—A means to reduce climate change risks?. Energy Policy, 38(6), 2797-2805. 149.Scovronick N., and Wilkinson P., 2014, Health impacts of liquid biofuel production and use: A review, Global Environmental Change, 24, January 2014, 155-164 150. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319:1238–1240. 151.Searchinger, T.D., Wirsenius, S., Beringer, T., & Dumas, P. (2018). Assessing the efficiency of changes in land use for mitigating climate change. Nature, 564(7735), 249-253. 152.Searle, A. S., and Giuntoli, J. (2018). Analysis of high and low indirect land-use change definitions in European Union renewable fuel policy, Techincal report of the International Council on Clean Transportation (ICCT), Working paper 2017-29. 153.Shrestha, D. S., Staab, B.D., & Duffield, J.A. (2019). Biofuel impact on food prices index and land use change. Biomass and Bioenergy, 124, 43-53. 154.Sims, R.E., Hastings, A., Schlamadinger, B., Taylor, G., & Smith, P. (2006). Energy crops: current status and future prospects. Global Change Biology, 12(11), 2054-2076. 155.Situmorang, Y. A., Zhao, Z., Yoshida, A., Abudula, A., & Guan, G. (2020). Small-scale biomass gasification systems for power generation (< 200 kW class): A review. Renewable and sustainable energy reviews, 117, 109486. 156.Smeets E., Tabeau A., van Berkum S., Moorad J., van Meijl H., Woltjer G., 2014. The impact of the rebound effect of the use of first generation biofuels in the EU on greenhouse gas emissions: A critical review Renewable and Sustainable Energy Reviews, 38(C), 393-403. 157.Souza, G. M., Ballester, M. V. R., de Brito Cruz, C. H., Chum, H., Dale, B., Dale, V. H., ... & Van der Wielen, L. (2017). The role of bioenergy in a climate-changing world. Environmental development, 23, 57-64. 158.Tilman, D., Hill, J., & Lehman, C. (2006). Carbon-negative biofuels from low-input high- diversity grassland biomass. Science, 314(5805), 1598-1600. 159.Tomei, J., & Helliwell, R. (2016). Food versus fuel? Going beyond biofuels. Land Use Policy, 56, 320-326. 160.Tricase C., Lombardi M., 2009. State of the art and prospects of Italian biogas production from animal sewage: Technical-economic considerations, Renewable Energy, 34, (3), March 2009, 477-485, ISSN 0960-1481. 161.Tricase C., Lombardi M., 2008, Il ruolo degli “agrofuels” nella politica energetica europea, La Rivista dei Combustibili, 62, (I), 53-62, ISSN 1972-0122 162.Tricase C., Lombardi M., 2012a, Biofuel production: some ecological and economic considerations, XIX ISAF (International Symposium on Alcohol Fuels), Development and utilization of alcohol fuels to reduce environmental pollution, 10-14 October 2011, Verona (Italy), CREAR/Re-CORD, University of Florence (Italy), Ente Autonomo per le Fiere di Verona, 571-573, ISBN 978-88-7743-369-5. 163.Tricase C., Lombardi M., 2012b. Environmental analysis of biogas production systems. Biofuels, 3(6), 749-760 164.UN 2020 The Sustainable Development Goals Report. Available at https://unstats.un.org/sdgs/report/2020/ 165.Upreti, B. R. (2004). Conflict over biomass energy development in the United Kingdom: some observations and lessons from England and Wales. Energy policy, 32(6), 785-800. 166.Upreti, B. R., & van der Horst, D. (2004). National renewable energy policy and local opposition in the UK: the failed development of a biomass electricity plant. Biomass and bioenergy, 26(1), 61-69. 167.UNEP, 2009, Towards sustainable production and use of resources: assessing biofuels, United Nations Environment Programme, pp. 1 – 120, ISBN: 978-92-807-3052-4, Available at: https://wedocs.unep.org/handle/20.500.11822/8680 (accessed 30 December 2020). 168.Valin, H., Peters, D., van den Berg, M., Frank, S., Havlik, P., Forsell, N., & Hamelinck, C. (2015). The land use change impact of biofuels consumed in the EU: Quantification of area and greenhouse gas impacts. Report commissioned by the European Commission: Project number: BIENL13120. 169.Vanham D., Adrian Leip, Alessandro Galli, Thomas Kastner, Martin Bruckner, Aimable Uwizeye, Kimo van Dijk , Ertug Ercin, Carole Dalin,Miguel Brandão , Simone Bastianoni, Kai Fang, Allison Leach, Ashok Chapagain, Marijn Van der Velde, Serenella Sala, Rana Pant, Lucia Mancini, Fabio Monforti-Ferrario, Gema Carmona-Garcia, Alexandra Marques, Franz Weiss, Arjen Y. Hoekstra, Environmental footprint family to address local to planetary sustainability and deliver on the SDGs, Science of the Total Environment, 693(2019) 133642, https://doi.org/10.1016/j.scitotenv.2019.133642 170.Vlachokostas, C., Achillas, C., Agnantiaris, I., Michailidou, A. V., Pallas, C., Feleki, E., & Moussiopoulos, N. (2020). Decision Support System to Implement Units of Alternative Biowaste Treatment for Producing Bioenergy and Boosting Local Bioeconomy. Energies, 13(9), 2306. 171.Wackernagel M., Rees E., 1995, Our Ecological Footprinting: Reducing Human Impact on the Earth, New Society Publishers. 172.Wagstrom, K., and J. Hill. 2012. Air pollution impacts of biofuels. In: Socioeconomic and Environmental Impacts of Biofuels: Evidence from Developing Nations. A. Gasparatos and P. Stromberg, eds. Cambridge Univ. Press, Cambridge. 53–68. 173.Walsh, M. E. (1998). US bioenergy crop economic analyses: status and needs. Biomass and Bioenergy, 14(4), 341-350. 174.Water Footprint Network, 2021, What is the Waterfootprint? Avaliable at: https://waterfootprint.org/en/water-footprint/what-is-water-footprint/ (accessed 10 Janaury 2021) 175.Weißbach D., Ruprecht, G., Huke, A., Czerski, K., Gottlieb S., Hussein A., 2013. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants, Energy, 52(C): 210-221. 176.Winchester, N., & Reilly, J. M. (2015). The feasibility, costs, and environmental implications of large-scale biomass energy. Energy economics, 51, 188-203. 177.Wüstenhagen, R., Wolsink, M., & Bürer, M. J. (2007). Social acceptance of renewable energy innovation: An introduction to the concept. Energy policy, 35(5), 2683-2691. 178.Yadav P., Priyanka P., Kumar D., Yadav A., Yadav K. (2019) Bioenergy Crops: Recent Advances and Future Outlook, in Rastegari A., Yadav A., Gupta A. (eds), Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_12 179.Yakubiv, V., Panukhnyk, O., Shults, S., Maksymiv, Y., Hryhoruk, I., Popadynets, N., ... & Bilyk, I. (2019, July). Application of economic and legal instruments at the stage of transition to bioeconomy. In International Conference on Applied Human Factors and Ergonomics (pp. 656-666). Springer, Cham. 180.Yang, H., Zhou, Y. and Liu, J. G. (2009) ‘Land and water requirements of biofuel and implications for food supply and the environment in China’, Energy Policy, vol 37, 5, 1876– 1885 181.Zabaniotou, A. (2018). Redesigning a bioenergy sector in EU in the transition to circular waste- based Bioeconomy-A multidisciplinary review. Journal of Cleaner Production, 177, 197-206. 182.Zabaniotou, A., Rovas, D., Libutti, A., & Monteleone, M. (2015). Boosting circular economy and closing the loop in agriculture: Case study of a small-scale pyrolysis–biochar based system integrated in an olive farm in symbiosis with an olive mill. Environmental Development, 14, 22-36. 183.Zahraee, S. M., Shiwakoti, N., & Stasinopoulos, P. (2020). Biomass supply chain environmental and socio-economic analysis: 40-Years comprehensive review of methods, decision issues, sustainability challenges, and the way forward. Biomass and Bioenergy, 142, 105777. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/115454 |