Larrosa, Juan MC (2005): A Latent Budget Analysis Approach to Classification: Examples from Economics.
Preview |
PDF
MPRA_paper_12569.pdf Download (80kB) | Preview |
Abstract
Latent budget analysis is a classification technique that allows clustering identification by using compositional data. This paper presents examples of how this technique deals with the unit-sum constraint by establishing an initial independence model to which subsequent models are compared in terms of their relative fitness degree. In fact, latent budget analysis does not impose linearity, homogeneity, or even specific distributions on data. Results help to understand some important relationships between capital stock composition and income or food diet composition in a heterogeneous sample of countries.
Item Type: | MPRA Paper |
---|---|
Original Title: | A Latent Budget Analysis Approach to Classification: Examples from Economics |
Language: | English |
Keywords: | Latent budget analysis; compositional data; food composition; capital composition |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C46 - Specific Distributions ; Specific Statistics |
Item ID: | 12569 |
Depositing User: | Juan M.C. Larrosa |
Date Deposited: | 08 Jan 2009 05:57 |
Last Modified: | 09 Oct 2019 09:44 |
References: | Aitchison, J. (1986). The Statistical Analysis of Compositional Data. London, New York: Chapman and Hall. 417 p. Ark, Van der L.A. (1999). Contributions to Latent Budget Analysis; A Tool for the Analysis of Compositional Data. Leiden: DSWO-press. Ark, Van der L.A., and P.G.M. Van der Heijden (1996). Geometry and Identifiability in the Latent Budget Model. (Methods Series MS-96-3). Utrecht: Utrecht University, Faculty of Social Sciences, ISOR. Ark, Van der L.A., and P.G.M. Van der Heijden (1996). “Graphical Display of Latent Budget Analysis and Latent Class Analysis, with Special Reference to Correspondence Analysis”. (Methods Series MS-96-4). Utrecht: Utrecht University, Faculty of Social Sciences, ISOR. Ark, Van der L.A., and Van der Heijden, P.G.M. (1998). “Graphical display of latent budget analysis and latent class analysis, with special reference to correspondence analysis”. In J. Blasius, & M. Greenacre (Eds.), Visualization of Categorical Data, (pp.489-509). San Diego: Academic Press. Ark, Van der L.A., P.G.M. van der Heijden, and D. Sikkel (1999). “On the identifiability in the latent budget model”. Journal of Classification 16: 117-137. Clogg, C.C. (1981). “Latent structure models of mobility”. American Journal of Sociology 86: 836-868. de Leeuw, J., and P.G.M. Van der Heijden (1988). “The analysis of time-budgets with a latent time-budget model”. In E. Diday (Ed.) Data Analysis and Informatics V: 159-166. Amsterdam: North-Holland. de Leeuw, J., P.G.M. Van der Heijden and P. Verboon (1990). “A latent time budget model”. Statistica Neerlandica 44: 1-21. Heijden, Van der P.G.M. (1994). “End-member analysis and latent budget analysis”. Applied Statistics, Journal of the Royal Statistical Society, Series C, 43: 527-530. Heijden, Van der P.G.M., A. Mooijaart, and de Leeuw, J. (1989). Latent budget analysis. In A. Decarli, B.J. Francis, R. Gilchrist, and G.U.H. Seeber (Eds.). Statistical Modelling. Proceedings of GLIM 89 and the 4-th International Workshop on Statistical Modelling, Lecture Notes in Statistics 57: 301-313. Berlin: Springer-Verlag. Heijden, Van der P.G.M., L.A. Van der Ark, and A. Mooijaart (1999). “Some examples of latent budget analysis and its extensions”. In A.L. McCutcheon, and J.A.P. Hagenaars (eds.). Advances in Latent Class Modeling Cambridge: Cambridge University Press. Larrosa, J.M.C. (2003). “A compositional statistical analysis of capital stock”. Documento de Trabajo 5, Instituto de Economía, Universidad Nacional del Sur. Mooijaart, A., P.G.M. Van der Heijden, and L.A. Van der Ark (1999). “A least squares algorithm for a mixture model for compositional data”. Computational Statistics and Data Analysis 30: 359-379. Thió-Henestrosa, S. and J.A. Martín-Fernández (2005). “Dealing with compositional data: the freeware Codapack”. Mathematical Geology (forthcoming). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/12569 |