McCauley, Joseph L. (2007): Fokker-Planck and Chapman-Kolmogorov equations for Ito processes with finite memory.
Preview |
PDF
MPRA_paper_2128.pdf Download (897kB) | Preview |
Abstract
The usual derivation of the Fokker-Planck partial differential eqn. (pde) assumes the Chapman-Kolmogorov equation for a Markov process [1,2]. Starting instead with an Ito stochastic differential equation (sde), we argue that finitely many states of memory are allowed in Kolmogorov’s two pdes, K1 (the backward time pde) and K2 (the Fokker-Planck pde), and show that a Chapman-Kolmogorov eqn. follows as well. We adapt Friedman’s derivation [3] to emphasize that finite memory is not excluded. We then give an example of a Gaussian transition density with 1-state memory satisfying both K1, K2, and the Chapman-Kolmogorov eqns. We begin the paper by explaining the meaning of backward time diffusion, and end by using our interpretation to produce a very short proof that the Green function for the Black-Scholes pde describes a Martingale in the risk neutral discounted stock price.
Item Type: | MPRA Paper |
---|---|
Institution: | University of Houston |
Original Title: | Fokker-Planck and Chapman-Kolmogorov equations for Ito processes with finite memory |
Language: | English |
Keywords: | Stochastic process; martingale; Ito process; stochastic differential eqn.; memory; nonMarkov process; 2 backward time diffusion; Fokker-Planck; Kolmogorov’s partial differential eqns.; Chapman-Kolmogorov eqn.; Black- Scholes eqn |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C69 - Other G - Financial Economics > G0 - General |
Item ID: | 2128 |
Depositing User: | Joseph L. McCauley |
Date Deposited: | 09 Mar 2007 |
Last Modified: | 28 Sep 2019 11:35 |
References: | 1. B. V. Gnedenko, The Theory of Probability, tr. by B.D. Seckler (Chelsea, N.Y., 1967). 2. R.L. Stratonovich. Topics in the Theory of Random Noise, tr. By R. A. Silverman (Gordon & Breach: N.Y 1963). 3. A. Friedman, Stochastic Differential Equations and Applications (Academic, N.Y., 1975). 4. L. Arnold, Stochastic Differential Equations (Krieger, Malabar, 1992). 18 5. J.M. Steele, Stochastic Calculus and Financial Applications (Springer-Verlag, N.Y., 2000). 6. K.E. Bassler, G.H. Gunaratne, & J. L. McCauley, Hurst Exponents, Markov Processes, and Nonlinear Diffusion Equations, Physica A 369: 343 (2006). 7. J. L. McCauley , G.H. Gunaratne, & K.E. Bassler, Martingales, Detrending Data, and the Efficient Market Hypothesis, submitted (2007). 8. P. Hänggi and H. Thomas, Time Evolution, Correlations, and Linear Response of Non-Markov Processes, Zeitschr. Für Physik B26: 85 (1977). 9. J. L. McCauley, Markov vs. nonMarkovian processes: A comment on the paper ‘Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker-Planck equations’ by T.D. Frank, submitted (2007). 10. J. L. McCauley , G.H. Gunaratne, & K.E. Bassler, Hurst Exponents, Markov Processes, and Fractional Brownian Motion, Physica A (2007). 11. P. Hänggi, H. Thomas, H. Grabert, and P. Talkner, Note on time Evolution of Non-Markov Processes, J. Stat. Phys. 18: 155 (1978). 12. T.D. Frank, Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker-Planck equations, Physica A331: 391 (2004). 13. J.L. McCauley, Dynamics of Markets: Econophysics and Finance (Cambridge, Cambridge, 2004). 19 14. J. L. McCauley, G.H. Gunaratne, & K.E. Bassler, Martingale Option Pricing, Physica A (2007). 15. M.C. Wang & G.E. Uhlenbeck in Selected Papers on Noise and Stochastic Processes, ed. N. Wax, Dover: N.Y., 1954. 16. D. Duffie, An Extension of the Black-Scholes Model of Security Valuation, J. Econ. Theory 46,194, 1988. 17. W. Feller, The Annals of Math. Statistics 30, No. 4, 1252, 1959. 18. J. L. Snell, A Conversation with Joe Doob, http://www.dartmouth.edu/~chance/Doob/conversation. html; Statistical Science 12, No. 4, 301, 1997. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/2128 |