McCauley, Joseph L. (1999): The Futility of Utility: how market dynamics marginalize Adam Smith. Published in: Physica A , Vol. 285, (2000): pp. 506-538.
Preview |
PDF
MPRA_paper_2163.pdf Download (191kB) | Preview |
Abstract
General Equilibrium Theory in econometrics is based on the vague notion of utility. Prices, dynamics, and market equilibria are supposed to be derived from utility. Utility is sometimes treated like a potential, other times like a Lagrangian. Illegal assumptions of integrability of actions and dynamics are usually made. Economists usually assume that price is the gradient of utility in equilibrium, but I observe instead that price as the gradient of utility is an integrability condition for the Hamiltonian dynamics of an optimization problem. I discuss both deterministic and statistical descriptions of the dynamics of excess demand and observe that Adam Smith's stabilizing hand is not to be found either in deterministic or stochastic dynamical models of markets nor in the observed motions of asset prices. Evidence for stability of prices of assets in free markets has not been found.
Item Type: | MPRA Paper |
---|---|
Institution: | University of Houston |
Original Title: | The Futility of Utility: how market dynamics marginalize Adam Smith |
Language: | English |
Keywords: | Utility; general equilibrium; nonintegrability; control dynamics; conservation laws; chaos; instability; supply-demand curves; nonequilibrium dynamics |
Subjects: | D - Microeconomics > D5 - General Equilibrium and Disequilibrium D - Microeconomics > D0 - General > D01 - Microeconomic Behavior: Underlying Principles A - General Economics and Teaching > A2 - Economic Education and Teaching of Economics |
Item ID: | 2163 |
Depositing User: | Joseph L. McCauley |
Date Deposited: | 09 Mar 2007 |
Last Modified: | 28 Sep 2019 17:43 |
References: | 1. H. R. Varian, Microeconomic Analysis (Norton, New York, 1992). 2. P. Mirowski, More Heat than Light. Economics as social physics, physics as nature’s economics (Cambridge, Cambridge, 1989). 3. P. A. Samuelson, Economica XVII, nr. 68 (1950) 155. 4. P. Samuelson, Economics (McGraw-Hill, New York, 1976). 5. J. L. McCauley, Physica A 237 (1997) 387, and Discrete Dynamics in Nature and Society 1 (1997) 17. 6. K.J. Arrow & L. Hurwicz, Econometrica 26 (1958) 522. 7. H. Scarf, International Economic Review 1 (1960) 157. 8. J. L. McCauley, Classical Mechanics: flows, transformations, integrability, and chaos, Ch. 16 (Cambridge, Cambridge 1997). 8b. E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, pp. 322-325 (Cambridge, Cambridge, 1965). 9. S. Smale, J. of Math, Economics 3 (1976) 107. 10. J.I. Palmore & S.A. Burns, Physica D37 (1989) 83. 11. V. I. Arnol’d, Ordinary Differential Equations (SpringerVerlag, New York, 1992). 12. D. Saari, Notices of the AMS 42 (1995) 222. 13. C. Moore, Phys. Rev, Lett. 64,2354 (1990); Nonlinearity 4, 199 and 727 (1991). 14. S. Smale, American Economic Review 66 (1976) 288. 39 15. E. R. Weintraub, Stabilizing Dynamics: Constructing Economic Knowledge (Cambridge, New York, 1991). 16. A. Einstein, Verh. Deutsche Ges. 19 (1917) 82. 17. W. A. Brock, in The Economy as an Evolving Complex System, ed. P. W. Anderson, K. J. Arrow, & D. Pines (Addison-Wesley, 1988). 18. Courant & Hilbert, Methods of Mathematical Physics vol. II (Interscience, New York 1953). 19. C. Caratheodory, Calculus of Variations (Chelsea, New York, 1989). 20. G. Hadley and M. C. Kemp, Variational Methods in Economics (North-Holland, Amsterdam, 1971); J. D. Pritchford and S. J. Turnovsky, Applications of Control theory to Economic Analysis (North-Holland, Amsterdam 1977). A. Takayama, Mathematical Economics (Cambridge, Cambridge 1991); M. D. Intriligator, Mathematical optimization and Economic Theory (Prentice-Hall, Englewood Cliffs, 1971); K. J. Arrow and M. Kurz, Public Investment, the Rate of Return, and Optimal Public Policy (Johns Hopkins, Baltimore, 1970); R. E. Lucas Jr., J. Monetary Economics 22, 3 (1988). 21.M.F.M. Osborne, The Stock Market and Finance from a Physicist’s Viewpoint (Crossgar, Mineapolis, 1977). 22. F. Black, J. of Finance 3 (1986) 529 23. J. Quirk & R. Saposnik, Intro. to General Equilibrium theory and Welfare Economics (McGraw-Hill, 1968). 24. Y-C Zhang, Toward a Theory of Marginally Efficient Markets, to appear in the Palermo Proceedings, ed. R. N. Mantegna (1999). 24b. D. M. Chance and P. P. Peterson,The New Science of Finance, American Scientist 87 (1999) 256. 25. G. A. Ackerlof, An Economic theoristÕs book of Tales, Ch. 2 (Cambridge, Cambridge, 1984). 40 26. P. R. Krugman, The Return of Depression Economics (Norton, New York, 1999). 26b. M. OÕHara, Market Microstructure Theory (Blackwell, Cambridge, Ma., 1995). 26c. A. W. Lo, A. C. MacKinlay, and J. Zhang, Econometric Models of Limit Order Executions, Nat. Bur. of Econ. Res. Working Paper 6257 (1997). 26d. J. Y. Campbell, A. W. Lo, and A. C. MacKinlay, The Econometrics of Financial Markets (Princeton, Princeton, 1997). 26e. A. Shleifer and L. H. Summers, J. Economic Perspectives 4 (1990) 19. 27. W. A. Brock, D. A. Hsieh, and B. LeBaron, Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence (MIT Pr., Cambridge, Ma., 1991). 28. Z. Bodie and R. C. Merton, Finance (Prentice-Hall, Saddle River, 1998). 29. P. Cootner, The Random Character of Stock Market Prices (MIT Pr., Cambridge, 1964). 29b. J. K. Sengupta, Stochastic Optimization and Economic Models (Reidel, Dordrecht, 1986). 29c. I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus (Springer-Verlag, New York, 1991). 29d. J. L. McCauley, Are Galaxy Distributions Scale Invariant, preprint (1997). 30. R. C. Merton, Continous Time Finance (Basil-Blackwell, Oxford, 1990). 41 30B. I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Springer (1998). 31. D. Duck, An Alternative Model for Option Pricing, preprint (ca. 1989). 31b. Gemunu Gunaratne, private conversations (1996-1999). 31c. F. N. Stein, Drunken Walker in a Sticky Alley, preprint (ca. 1989). 31c. J. Skjeltorp, Fractal Scaling Behavior in the Norwegian Stock Market, Masters Thesis, (1996). 31d. R. N. Mantegna and H. E. Stanley, Nature 6 (1995) 46. 31e. S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, and Y. Dodge, Nature 381 (1996) 767. 31f. J. l. Doob in Selected Papers on noise and Stochastic Processes, ed. N. Wax (Dover, New York, 1954). 32.M. Lewis, Liar’s Poker (Penguin, New York, 1989). 32b. E. Chancellor, Devil Take the Hindmost: a history of financial speculation (Farrar-Straus-Giroux, New York, 1999). 33. F. Black, M. C. Jensen, and M. Scholes in Studies in the Theory of Capital Markets, ed. M. C. Jensen (Praeger, New York, 1972). 34. B. Malkiel, A Random Walk Down Wall Street, 6th edition (Norton, New York, 1996). 34b. W. B. Arthur, Complexity in Economic and Financial Markets, Complexity 1 (1995).\ nr. 1. 35. F. Black, Financial AnalystsÕ Journal 38 (1982) 29. 36. F. Black and M. Scholes, J. Pol. Economy 81 (1973) 637. 42 37. J. Hull, Options, Futures, and Other Derivatives, 3rd edition (Prentice-Hall, Saddle River, 1997). 38. P. Wilmott, S. Howiston, and J. Dewynne,The Mathematics of Financial Derivatives (Cambridge, Cambridge, 1995). 39. M. Baxter and A. Rennie, Financial Calculus (Cambridge, Cambridge, 1996). 40. K. Lux, Adam SmithÕs Mistake: how a moral philosopher invented economics and ended morality (Shambala, Boston, 1990). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/2163 |