Cooper, Joseph C. (1999): Nonparametric and Semi-Nonparametric Recreational Demand Analysis. Published in: American Journal of Agricultural Economics , Vol. 82, No. 2 (May 2000): pp. 451-462.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_25886.pdf Download (313kB) | Preview |
Abstract
This paper addresses issues of specification testing for the travel cost method (TCM). Two nonparametric approaches to TCM analysis are presented. In addition, semi- nonparametric count models for TCM are developed.A numerical illustration isprovided in which the three methodsare applied to an actual TCM data set on waterfowl hunting and the results are compared to those from a parametric analysis.
Item Type: | MPRA Paper |
---|---|
Original Title: | Nonparametric and Semi-Nonparametric Recreational Demand Analysis |
Language: | English |
Keywords: | bootstrap; count model; Fourier; kernel; nonparametric; PAVA; semi-nonparametric; travel cost method |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q0 - General |
Item ID: | 25886 |
Depositing User: | Joseph C. Cooper |
Date Deposited: | 16 Oct 2010 11:28 |
Last Modified: | 07 Oct 2019 16:30 |
References: | Anderson, T. “Some Nonparametric Multivariate Procedures Based on Statistically Equivalent Blocks,” Multivariate Analysis I. P. Krishnaiah, ed. 1965. Andrews, D. “Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Model.”Econometrica 59(March 1991):307–45. Ayer, M., H. Brunk, G. Ewing,W. Reid, and E. Silverman. “An Empirical Distribution Function for Sampling with Incomplete Information.” Ann. Math. and Statist. 26(1955):641–47. Cameron, A., and P. Johansson. “Count Data Regression Using Series Expansions: with Applications.” J. Appl. Econometrics 12(May/June 1997):203–23. Cameron, A., and P. Trivedi. “Regression-based Tests for Overdispersion in the Poisson Model,” J. Econometrics 46(1990):347–364. Chalfant, J., and R. Gallant, “Estimating Substitution Elasticities with the Fourier Cost Function.” J. Econometrics 28(May 1985):205–22. Cooper, J., and J. Loomis.“TestingWhetherWaterfowl Hunting Benefits Increase with Greater Water Deliveriesto Wetlands.” Environ. and Resour. Econ. 3(December 1993):545–61. Creel, M. “Welfare Estimation Using the Fourier Form: Simulation Evidence for the Recreation Demand Case.” Rev. Econ. and Statist. 78(February 1997):88–94. Creel, M., and J. Loomis. “Semi-nonparametric Distribution-Free Dichotomous Choice Contingent Valuation.” J. Environ. Econ. and Manage. 32(March 1997):341–58. Creel, M. and J. Loomis. “Theoretical and Empirical Advantages ofTruncated Count Data Estimators for Analysis of Deer Hunting in California.” Amer. J. Agr. Econ. 72(May 1990):434–45. Delgado, M., and P. Robinson. “Nonparametric and Semi-parametric Methodsfor Economics Research.” J. Econ. Surveys 6(1992):201–49. Efron, B. “Better Bootstrap Confidence Intervals.” J. Amer. Statist. Assoc. 82(1987):171–85. Feather, P., and D. Hellerstein. “Calibrating Benefit Function Transfer to Assess the Conservation Reserve Program.” Amer. J. Agr. Econ. 79(February 1997):151–62. Feather, P., D. Hellerstein, and T. Tomasi. “A Discrete-Count Model of Recreational Demand.” J. Environ. Econ. and Manage. 29 (September 1993):214–27. Fenton, V., and Gallant, A. “Qualitative and Asymptotic Performance of SNP Density Estimators,” J. Econometrics 74 (1996):77–118. Gallant, A. “Unbiased Determination of Production Technologies.” J. Econometrics 20(1982):285–323. Gallant, A. “Identification and Consistency in Semi- Nonparametric Regression.” Advances in Econometrics Vol. I. Truman F. Bewley, ed., pp. 145–169. New York: Cambridge University Press, 1987. Gallant,A. and G. Souza.“On the Asymptotic Normality of Fourier Flexible Form Estimates.” J. Econometrics 50(December 1991):329–53. Gallant, A. and G. Tauchen. “Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications.” Econometrica 57(September 1989):1091–1120. Goffe,W., G. Ferrier, and J. Rodgers.“Global Optimization of Statistical functions with simulated Annealing.” J. Econometrics 60(January 1994):65–99. Gourieroux, C., A. Montfort, and A. Trognon. “Pseudo Maximum Likelihood Methods: Applications.” Econometrica 52(May 1984):701–20. Greene, W. Limdep: User’s Manual and Reference Guide, Version 6.0. Bellport NY: Econometric Software, Inc., 1992. Haab, T., and K. McConnell. “Referendum Modelsand Negative Willingnessto Pay: Alternative Solutions.” J. Environ. Econ. and Manage. 32(February 1997):251–70. H¨ardle, W. Applied Nonparametric Regression. Cambridge UK: Cambridge University Press, 1990. Hellerstein, D. “Using Count Data Models in Travel Cost Analysis with Aggregate Data.” Amer. J. Agr. Econ. 73(August 1991):860–66. Koning, R. H. “Kernel: a Gauss Library for Kernel Estimation.” June, 1999. http://www.rhkon ing.com/gauss/ Kristom, B. “A Non-parametric Approach to the Estimation of Welfare Measures in Discrete Response Valuation Studies.” Land Econ. 66 (May 1990):135–39. Nason, G.P. “Wavelet Shrinkage Using Cross- Validation.” J. Roy. Statist. Soc., Ser. B 58(1996):463–79. Silverman, B. W. Density Estimation. London: Chapman and Hall, 1986. Turnbull, B. “The Empirical Distribution Function with Arbitarily Grouped, Censored, and Truncated Data.” J. Roy. Statist. Soc., Ser. B 38(1976):290–95. Van Ryzin, J. “A Histogram Method of Density Estimation.” Communications in Statist. 2(1982):493–506. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/25886 |
Available Versions of this Item
-
Nonparametric and Semi-Nonparametric Recreational Demand Analysis. (deposited 07 Sep 2010 18:45)
- Nonparametric and Semi-Nonparametric Recreational Demand Analysis. (deposited 16 Oct 2010 11:28) [Currently Displayed]