González-Val, Rafael (2010): A Nonparametric Estimation of the Local Zipf Exponent for all US Cities.
Preview |
PDF
MPRA_paper_26720.pdf Download (128kB) | Preview |
Abstract
In this short paper we apply the methodology proposed by Ioannides and Overman (2003) to estimate a local Zipf exponent using data for the entire twentieth century of the complete distribution of cities (incorporated places) without any size restrictions in the US. The results reject Zipf’s Law from a long term perspective, as the estimated values are close to zero. However, decade by decade we find evidence in favour of Zipf’s Law. We also see how periods in which the Zipf exponent grows with city size are interspersed with others in which the relationship between the exponent and city shares is negative.
Item Type: | MPRA Paper |
---|---|
Original Title: | A Nonparametric Estimation of the Local Zipf Exponent for all US Cities |
Language: | English |
Keywords: | Zipf’s Law; Gibrat’s Law; urban growth |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R0 - General > R00 - General |
Item ID: | 26720 |
Depositing User: | Rafael González-Val |
Date Deposited: | 16 Nov 2010 05:49 |
Last Modified: | 26 Sep 2019 16:54 |
References: | Black, D., and V. Henderson, (2003). Urban evolution in the USA. Journal of Economic Geography, 3(4): 343–372. Cheshire, P., (1999). Trends in sizes and structure of urban areas. In: Handbook of Regional and Urban Economics, Vol. 3, P. Cheshire and E. S. Mills, eds. Amsterdam: Elsevier, Chap. 35, 1339–1373. Eeckhout, J., (2004). Gibrat's Law for (All) Cities. American Economic Review, 94(5): 1429–1451. Gabaix, X., (1999). Zipf’s law for cities: An explanation. Quarterly Journal of Economics, 114(3): 739–767. Gabaix, X., and R. Ibragimov, (2007). Rank-1/2: a simple way to improve OLS estimation of tail exponents. NBER technical working paper, vol. 342. Gabaix, X., and Y. M. Ioannides, (2004). The evolution of city size distributions. In: Handbook of urban and regional economics, Vol. 4, J. V. Henderson and J. F. Thisse, eds. Amsterdam: Elsevier, 2341–2378. Gibrat, R., (1931). Les Inégalités Économiques. París: Librairie du Recueil Sirey. Goldstein, M. L., S. A. Morris and G. G. Yen, (2004). Problems with fitting to the Power-law distribution. The European Physical Journal B – Condensed Matter, 41(2): 255–258. González-Val, R., (2010). The Evolution of the US City Size Distribution from a Long-run Perspective (1900–2000). Forthcoming in Journal of Regional Science. DOI 10.1111/j.1467-9787.2010.00685.x Härdle, W., (1990). Applied nonparametric regression. Cambridge,: Cambridge Univ. Press. Ioannides, Y. M., and H. G. Overman, (2003). Zipf’s Law for Cities: an Empirical Examination. Regional Science and Urban Economics, 33: 127–137. Nishiyama, Y., S. Osada and Y. Sato, (2008). OLS estimation and the t test revisited in rank-size rule regression. Journal of Regional Science, 48(4): 691–715. Overman, H. G., and Y. M. Ioannides, (2001). Cross-Sectional Evolution of the U.S. City Size Distribution. Journal of Urban Economics 49, 543–566. Soo, K. T., (2005). Zipf’s Law for cities: a cross-country investigation. Regional Science and Urban Economics, 35: 239–263. Zipf, G., (1949). Human Behaviour and the Principle of Least Effort. Cambridge, MA: Addison-Wesley. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/26720 |
Available Versions of this Item
- A Nonparametric Estimation of the Local Zipf Exponent for all US Cities. (deposited 16 Nov 2010 05:49) [Currently Displayed]