Logo
Munich Personal RePEc Archive

Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics

Antipov, Evgeny and Pokryshevskaya, Elena (2010): Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics.

[thumbnail of MPRA_paper_27645.pdf]
Preview
PDF
MPRA_paper_27645.pdf

Download (157kB) | Preview

Abstract

To the best knowledge of authors, the use of Random forest as a potential technique for residential estate mass appraisal has been attempted for the first time. In the empirical study using data on residential apartments the method performed better than such techniques as CHAID, CART, KNN, multiple regression analysis, Artificial Neural Networks (MLP and RBF) and Boosted Trees. An approach for automatic detection of segments where a model significantly underperforms and for detecting segments with systematically under- or overestimated prediction is introduced. This segmentational approach is applicable to various expert systems including, but not limited to, those used for the mass appraisal.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.