Baumöhl, Eduard and Lyócsa, Štefan (2009): Stationarity of time series and the problem of spurious regression.
Preview |
PDF
MPRA_paper_27926.pdf Download (524kB) | Preview |
Abstract
The goal of this paper was to introduce some general issues of non-stationarity for practitioners, students and beginning researchers. Using elementary techniques we examined the effect of non-stationary data on the results of regression analysis. We further shoved the effect of larger sample sizes on the spuriousness of regressions and we also examined the well known “rule of thumb” of how to identify spurious regressions. We also demonstrated the problem of spurious regression on a practical example, using closing prices of stock market indices from CEE markets.
Item Type: | MPRA Paper |
---|---|
Original Title: | Stationarity of time series and the problem of spurious regression |
Language: | English |
Keywords: | stationarity, time series data, various unit root tests, spurious regression, the R-squared and the Durbin – Watson statistics “rule of thumb”, CEE stock markets |
Subjects: | G - Financial Economics > G1 - General Financial Markets > G15 - International Financial Markets C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General |
Item ID: | 27926 |
Depositing User: | Eduard Baumöhl |
Date Deposited: | 07 Jan 2011 20:50 |
Last Modified: | 26 Sep 2019 08:37 |
References: | [1] DAVIDSON, R. – MACKINNON, J. 2003. Econometric Theory and Methods. New York - Oxford University Press, 2003. ISBN 0-19512-372-7 [2] DICKEY, D. A. – BELL, W. – MILLER, R. 1986. Unit Roots in Time Series Models: Tests and Implications. In: American Statistician, 1986, vol. 40, no. 1, p. 12 – 26. ISSN 0003-1305 [3] DICKEY, D. A. – FULLER, W. A. 1979. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. In: Journal of American Statistical Association, 1979, vol. 40, no. 366, p. 427 – 431. ISSN 0162-1459 [4] DICKEY, D. A. – FULLER, W. A. 1981. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. In: Econometrica, 1981, vol. 49, no. 4, p. 1057 – 1072. ISSN 0012-9682 [5] DICKEY, D. A. – PANTULA, S. 1987. Determining the Order of Differencing in Autoregressive Processes. In: Journal of Business and Economic Statistics, 1987, vol. 5, no. 4, p. 455 – 461. ISSN 0735-0015 [6] ELLIOTT, G. – ROTHENBERG, T. J. – STOCK, J. H. 1996. Efficient Tests for an Autoregressive Unit Root. In: Econometrica, 1996, vol. 64, no. 4, p. 813–836. ISSN 0012-9682 [7] GRANGER, C. W. – NEWBOLD, P. 1974. Spurious Regressions in Econometrics. In: Journal of Econometrics, 1974, vol. 2, no. 2, p. 111 – 120. ISSN 0304-4076 [8] GUJARATI, N. D. 2004. Basic Econometrics, 4th edition. New York : McGraw - Hill, 2004. ISBN 978-0070597938 [9] HYLLEBERG, S. – ENGLE, R. – GRANGER, C. W. 1990. Seasonal Integration and cointegration. In: Journal of Econometrics, 1990, vol. 44, no. 1-2, p. 215 – 238. ISSN 0304-4076 [10] KOČENDA, E. – ČERNÝ, A. 2007. Elements of Time Series Econometrics: An Applied Approach. Praha : Karolinum Press, 2007. ISBN 978-80-246-1370-3 [11] KWIATKOWSKI, D. – PHILLIPS, P. – SCHMIDT, P. – SHIN, Y. 1992. Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root. In: Journal of Econometrics, 1990, vol. 54, no. 1-3, p. 159 – 178. ISSN 0304-4076 [12] MACKINNON, J. G. 1996. Numerical Distribution Functions for Unit Root and Cointegration Tests. In: Journal of Applied Econometrics, 1996, vol. 11, no. 6, p. 601 – 618. ISSN 0883-7252 [13] MADDALA, G. – KIM, I. 1998. Unit Roots, Cointegration and Structural Change. Cambridge : Cambridge University Press, 1998. ISBN 0-521-58257-1 [14] MILLS, T. C. 1999. The Econometric Modelling of Financial Time Series. Cambridge : Cambridge University Press, 1999. ISBN 0-521-62413-4 [15] NORIEGA, A. E. – VENTOSA-SANTAULARIA, D. 2006. Spurious Regression and Trending Variables. In: Oxford Bulleting of Economics and Statistics, 2007, vol. 69, no. 3, p. 439 – 444. ISSN 0305-9049 [16] PERRON, P. 1989. The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis. In: Econometrica, 1989, vol. 57, no. 6, p. 1361 – 1401. ISSN 0012-9682 [17] PHILLIPS, P. – PERRON, P. 1988. Testing of a Unit Root in Time Series Regression. In: Biometrika, 1988, vol. 75, no. 2, p. 335 – 346. ISSN 0006–3444 [18] SARGAN, J. D. – BHARGAVA, A. 1983. Testing Residuals from Least Square Regression for Being Generated by the Gaussian Random Walk. In: Econometrica, 1983, vol. 51, no. 1, p. 153 – 174. ISSN 0012-9682 [19] VERBEEK, M. 2008. Guide to Modern Econometrics, 3rd edition. Chichester : John Wiley & Sons, 2008. ISBN 978-0470517697 [20] ZIVOT, E. – ANDREWS, D. 1992. Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis. In: Journal of Business and Economic Statistics, 1992, vol. 10, no. 3, p. 251 – 270. ISSN 0735-0015 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/27926 |