Fernández-Avilés, G and Montero, JM and Mateu, J (2011): Mathematical Genesis of the Spatio-Temporal Covariance Functions. Published in: Journal of Mathematics and Statistics , Vol. 1, No. 7 (2011): pp. 37-44.
Preview |
PDF
MPRA_paper_35874.pdf Download (152kB) | Preview |
Abstract
Obtaining new and flexible classes of nonseparable spatio-temporal covariances have resulted in a key point of research in the last years within the context of spatiotemporal Geostatistics. Approach: In general, the literature has focused on the problem of full symmetry and the problem of anisotropy has been overcome. Results: By exploring mathematical properties of positive definite functions and their close connection to covariance functions we are able to develop new spatio-temporal covariance models taking into account the problem of spatial anisotropy. Conclusion/Recommendations: The resulting structures are proved to have certain interesting mathematical properties, together with a considerable applicability.
Item Type: | MPRA Paper |
---|---|
Original Title: | Mathematical Genesis of the Spatio-Temporal Covariance Functions |
English Title: | Mathematical Genesis of the Spatio-Temporal Covariance Functions |
Language: | English |
Keywords: | Spatial anisotropy, bernstein and complete monotone functions, spatio-temporal geostatistics, positive definite functions, space-time modeling, spatio-temporal data |
Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics |
Item ID: | 35874 |
Depositing User: | G. Fernández-Avilés |
Date Deposited: | 12 Jan 2012 16:25 |
Last Modified: | 28 Sep 2019 06:48 |
References: | 1. Berg, C. and G. Forst, 1975. Potential theory on locally compact abelian groups. Springer, New York. ISBN: 9780387072494. 2. Bernstein, S.N., 1928. Sur les fonctions absolument monotones. Acta Math, 52: 1-66. DOI: 10.1007/BF02592679. 3. Bochner, S., 1933. Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse. Mathematische Annalen, 108(1): 378-410. DOI: 10.1007/BF01452844. 4. Chen, L., M. Fuentes, and J.M. Davis, 2006. Spatial temporal statistical m odelling and prediction of environmental processes. In: Hierarchical Modelling for the Environmental Sciences (eds. J.S. Clark and A. Gelfand) pp. 121-144, Oxford Univ. Press, Oxford. ISBN13: 978-0-19-856967-1 ISBN10: 0-19-856967-X. 5. Christakos, G., 2000. Modern Spatiotemporal Geostatistics. Oxford University Press, Oxford. ISBN: 0195138953, 9780195138955. 6. Christakos, G., 2002. On a deductive logic-based spatiotemporal random field theory. Probability Theory and Mathematical Statistics, 66: 54-65. http://www.ams.org/journals/tpms/2002-66-00/home.html 7. Cressie, N.A.C. and C. Huang, (1999). Classes of Nonseparable, Spatiotemporal Stationary Covariance Functions. Journal of the American Statistical Association, 94: 1330-1340. http://www.jstor.org/stable/2669946?origin=crossref 8. De Cesare, L., D.E. Myers and D. Posa, 2001. Product-sum covariance for space-time modeling: an environmental application. Environmetrics, 12 (1): 11-23. DOI: 10.1002/1099-095X(200102)12:1<11::AID-ENV426>3.0.CO;2-P. 9. Dimitrakopoulos, R. and X. Luo, 1994. Spatiotemporal Modeling: Covariances and Ordinary Kriging System. In: Geostatistics for the Next Century (ed. R. Dimitrakopoulos) pp. 88-93. Kluwer Academic Publisher, Dordrecht. ISBN: 978-0-7923-2650-2. 10. Feller, W., 1966. An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley, New York. 11. Fernández-Casal, R., W. González-Manteiga and M. Febrero-Bande, 2003. Flexible spatio-temporal stationary variogram models. Statistics and Computing, 13: 127-136. DOI: 10.1023/A:1023204525046. 12. Fuentes, M., 2002. Spectral methods for nonstationary spatial processes. Biometrika, 89: 197-210. DOI: 10.1093/biomet/89.1.197. 13. Fuentes, M. and R. Smith, 2001. A new class of nonstationary spatial models. Research Report of the Statistics Department at North Carolina State University. http://132.248.182.189/cursos/geoest/Articulos/Geostatistics/ 14. Gneiting, T., 1997. Normal scale mixtures and dual probability densities. Journal of Statistical Computation and Simulation, 59: 375-384. http://sccn.ucsd.edu/~jason/gneiting_dual.pdf 15. Gneiting, T., 2002. Nonseparable Stationary covariance functions for space-time data. Journal of the American Statistical Association, 97: 590-600. http://www.amstat.org/publications/index.html 16. Gneiting, T., M.G. Genton, and P. Guttorp, 2005. Geostatistical space-time models, stationarity, separability, and full symmetry. Technical Report, 475, University of Washington. www.stat.washington.edu/research/reports/2005/tr475.pdf 17. Gregori, P., E. Porcu, J. Mateu and Z. Sasvari, 2008. On potentially negative space time covariances obtained as sum of products of marginal ones. Annals of the Institute of Statistical Mathematics, 60: 865-882. DOI: 10.1007/s10463-007-0122-8. 18. Guttorp, P., P.D. Sampson and Newman, K., 1992. Non-parametric Estimation of Spatial Covariance with Application to Monitoring Network Evaluation. In: Statistics in the Environmental and Earth Sciences (eds. Walden, A. T. and P. Guttorp) pp. 39-51. Edward Arnold, London. DOI: 10.1016/0021-9169(95)914-4. 19. Jones, R. and Y. Zhang, 1997. Models for continuous stationary space-time processes. In: Modelling Longitudinal and Spatially Correlated Data, Lecture Notes in Statistics, 122 (eds. G. Gregoire, D. Brillinger, P. Diggle, E. Russek-Cohen, W. Warren and R.Wolfinge) pp. 289-298. Springer, New York. ISBN: 0-387-98216-7. http://www.gbv.de/dms/ilmenau/toc/228932181.PDF 20. Kolovos, A., G. Christakos, D.T. Hristopulos and M.L. Serre, 2004. Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Advances in Water Resources, 27: 815-830. DOI:10.1016/j.advwatres.2004.04.002. 21. Kyriakidis, P.C. and A.G. Journel, 1999. Geostatistical space-time models: A review. Mathematical Geology, 31: 651-684. http://www.springerlink.com/content/h5l4k7v760045748/fulltext.html 22. Lu, N. and D.L. Zimmerman, D.L., 2005. Testing for directional symmetry in spatial dependence using the periodogram. Journal of Statistical Planning and Inference, 129 (1-2): 369-385. DOI: 10.1016/j.jspi.2004.06.058 23. Ma, C., 2002. Spatio-temporal covariance functions generated by mixtures. Mathematical Geology, 34: 965-974. DOI: 10.1023/A:1021368723926. 24. Ma, C., 2005. Spatio-temporal variograms and covariance models. Advances in Applied Probability, 37(3): 706-725. http://www.jstor.org/pss/30037351 25. Mateu J., E. Porcu and P. Gregori, 2007. Recent advances to model anisotropic space–time data. Stat. Meth. & Appl., 17: 209–223. DOI: 10.1007/s10260-007-0056-6. 26. Mitchell, M., M.G, Genton and M. Gumpertz, 2006. A likelihood ratio test for separability of covariances. Journal of Multivariate Analysis, 97: 1025-1043. DOI: 10.1016/j.jmva.2005.07.005. 27. Nelsen, R., 1999. An Introduction to Copulas. Lecture Notes in Statistics, 139. Springer Verlag, New York. ISBN: 978-0-387-28659-4. http://www.pdfgeni.com/book/nelsen-an-introduction-to-copulas-pdf.html 28. Porcu, E., P. Gregori and J. Mateu, 2006. Nonseparable stationary anisotropic space-time covariance functions, Stochastic Environmental Research and Risk Assessment, 21 (2): 113-122. DOI: 10.1007/s00477-006-0048-3. 29. Porcu, E and J. Mateu, 2007. Mixture-based modeling for space–time data. Environmetrics, 18: 285–302. http://www3.interscience.wiley.com/cgi-bin/fulltext/114189980/PDFSTART 30. Porcu, E., J. Mateu and G. Christakos, 2009. Quasi-arithmetic means of covariance functions with potential applications to space-time data. Journal of Multivariate Analysis, 100(8): pp. 1830-1844. DOI: 10.1016/j.jmva.2009.02.013. 31. Rouhani, S. and T.J. Hall, 1989. Space-time Kriging of Groundwater Data, In: Geostatistics, Vol 2 (ed. M. Armstrong), pp. 639-651. Kluwer Academic Publishers, Dordrecht. 32. Sampson, P.D. and P. Guttorp, 1992. Nonparametric Estimation of Nonstationary Spatial Covariance Structures, Journal of the American Statistical Association, 87 /417): 108-119. http://www.jstor.org/stable/2290458 33. Scaccia, L. and R.J. Martin, 2005. Testing axial symmetry and separability of lattice processes. Journal of Statistical Planning and Inference. 131: 19-39. DOI: 10.1016/jspi.2004.01.003. 34. Schoenberg, I. J., 1938. Metric spaces and positive definite functions. Trans. Amer. Math. Soc., 44(3): 522–536. http://www.jstor.org/stable/1989894 35. Stein, M.L., 1999. Interpolation of Spatial Data. Some Theory of Kriging, Springer-Verlag, New York. ISBN: 0-387-98629-4. 36. Stein, M.L., 2005. Space-time covariance functions. Journal of the American Statistical Association, 100: 310-321. DOI: 10.1198/016214504000000854. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/35874 |