Chisari, Omar Osvaldo and Mastronardi, Leonardo Javier and Romero, Carlos Adrián (2012): Building an input-output Model for Buenos Aires City.
Preview |
PDF
MPRA_paper_40028.pdf Download (397kB) | Preview |
Abstract
Buenos Aires City (BAC) is the Argentina’s biggest city and the second largest metropolitan area in South America after Sao Paulo (Brazil). Assessing regional effects might be useful to take political or/and economic decisions, considering the dimension and the economic importance of Buenos Aires City. Taking into consideration the latter background information, the aim of this paper is to quantify the BAC’s interregional flows, evaluating direct and indirect regional effects with other regions of Argentina. At this regard, different levels of integration and dependence between BAC and the other regions country can be estimated applying and Interregional Input Output model. This is the first time a input-output matrix is constructed for Buenos Aires, which does not have a Regional Accounts System available. To tackle this problem, our model uses non-survey and calibration techniques. The paper focuses on the building process of that Input–Output Model and presents the estimations for intraregional and interregional tables. In particular, Argentina is separated in two regions, BAC and the rest of the country. The estimations to measure the Intraregional coefficients for each region are based on non-survey techniques, using Location Quotients (Simple Location Quotient, Cross Industry, Flegg’s Location Quotient and Augmented Flegg’s Location Quotient). Two common alternative ways to balance these matrices, the RAS and cross entropy methods are adapted to estimate the interregional coefficients.
Item Type: | MPRA Paper |
---|---|
Original Title: | Building an input-output Model for Buenos Aires City |
English Title: | Building an input-output Model for Buenos Aires City |
Language: | English |
Keywords: | Regional Input Output - Calibration techniques |
Subjects: | D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D57 - Input-Output Tables and Analysis R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R12 - Size and Spatial Distributions of Regional Economic Activity C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C67 - Input-Output Models |
Item ID: | 40028 |
Depositing User: | Leonardo Javier Mastronardi |
Date Deposited: | 13 Jul 2012 14:12 |
Last Modified: | 27 Sep 2019 13:50 |
References: | Bacharach, M., 1970. “Biproportional Matrices and Input-Output Change”. Cambridge, Cambridge University Press. Chisari, O. et al., 2010. “Un modelo de equilibrio general computable para la Argentina 2006”. Serie de textos de discusión N° 63.. Instituto de Economía. FACE. UADE. Available on: http://www.uade.edu.ar/DocsDownload/Publicaciones/4_226_1722_STD063_2010.pdf Faye, M., Mastronardi, L. y Romero, C., 2012. “Análisis de coeficientes de localización. El caso de la provincia de Córdoba”. Documento de trabajo. MPRA paper 36997, University Library of Munich, Germany. Available on: http://mpra.ub.uni-muenchen.de/36997/1/MPRA_paper_36997.pdf Flegg, A. T. and Webber, C. D., 1997. “On the appropiate use of location quotients in generating regional Input-Output tables: Reply”, University of the West of England, Bristol. Flegg A. T. and Webber, C. D. ,2000. “Regional size, regional specialization and the FLQ formula”, University of the West of England, Bristol. Fuentes Flores, N. A., 2002. “Matrices de Insumo-Producto de los estados fronterizos del norte de México”. Universidad Autónoma de Baja California, Plaza y Valdéz, México. Golan, A., Judge G. and D. Miller, 1994. “Recovering information from incomplete or partial multisectoral economic data”, Review of Economics and Statistics 76, 541-549. Jaynes, E. , 1982. “On the Rationale of Maximum-Entropy Methods,” Proceedings IEEE 70. Jensen et. al., 1979. “Regional Economic Planning”. Croom Helm, Londres. Kullback, S. and Leibler,R., 1951. “On information and sufficiency”. Annals of Mathematical Statistics, 22. 79-86. Leontief, W, 1983. “Análisis económico Input-Output”. Orbis, España. Mastronardi, L., 2010. “Desarrollo regional y eslabonamientos productivos: el caso CABA”, Subsecretaria de Desarrollo Económico del Gobierno de la Ciudad de Buenos Aires. http://ssde.mdebuenosaires.gob.ar/contenido/editor/File/trabajos_inv_2010/trabajo_j_stiglitz.pdf Mastronardi, L. and Romero, C., 2012. “Estimación de matrices insumo producto regionales mediante métodos indirectos. Una aplicación para la ciudad de Buenos Aires”. Documento de trabajo. MPRA paper 37006, University Library of Munich, Germany. Available on: http://mpra.ub.uni-muenchen.de/37006/1/MPRA_paper_37006.pdf McCann P. y Dewhurst J. H. L., 1998. “Regional size, industrial location and input-output expenditure coefficients”, Regional Studies. 32, 435-444. McDougall, R., 1999. "Entropy Theory and RAS are Friends,” GTAP Working Papers 300, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University. Ministerio de Desarrollo Económico, 2009. “La economía porteña”. Ministerio de Desarrollo Económico, Gobierno de la Ciudad de Buenos Aires. Agosto 2009. Robinson, S., Cattaneo A. and El-Said M., 2001. “Updating and Estimating a Social Accounting Matrix Using Cross Entropy Methods”, Economic Systems Research 13:1, pp. 47-64. Romero, C., 2009. “Calibración de modelos de equilibrio general computado: métodos y práctica usual”. Buenos Aires. Available on: http://mpra.ub.unimuenchen.de/17767/1/Romero_2009-calibracion_CGE-MPRA.pdf. Stone, R, 1962. “Multiple classifications in social accounting”. Bulletin de l’Institut International de Statistique, 39(3), 215-233. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/40028 |