Cifter, Atilla and Ozun, Alper (2007): Multiscale Systematic Risk: An Application on ISE-30. Forthcoming in: Istanbul Stock Exchange Review (2007)
This is the latest version of this item.
Preview |
PDF
MPRA_paper_4288.pdf Download (458kB) | Preview |
Abstract
In this study, variance changing to the scale and multi-scale Capital Asset Pricing Model (CAPM) is tested by Wavelets as a new analysis method in finance and economics. It introduces a new approach to the variance changing to the scale as a general risk indicator, and to multi-scale CAPM portfolio theory as a systematic risk indicator. In the study, variance changes to scale and systematic risk changes to scale of 10 stocks in ISE-30 have been determined. The ability of the investors to conduct risk based analysis up to 128 days allows them to determine the risk level to the scale (stock holding period).
According to the study results; it is determined that the variances of 10 stocks from ISE 30 change according to the scale and variance differentiation as an expression of general risk level increase starting from the 1st scale (1 to 4 days). In multi-scale CAPM, it is determined that systematic risk of all stocks is changed to frequency (scale) and increased at higher scales. The finding as to beta and return at the high levels shall be in stronger form evidenced by Gencay et al (2005) is determined as not applicable to ISE 30. The risk and return for ISE 30 are close to the positive in the 3rd scale (32 days), but they are in the same direction for the other scales. This finding shows that the risk-return maximization of a portfolio of 10 stocks from ISE may be achieved at a level of 32 days and the risk will be higher than the return in the portfolios established at those levels different than 32 days.
Item Type: | MPRA Paper |
---|---|
Institution: | Marmara University |
Original Title: | Multiscale Systematic Risk: An Application on ISE-30 |
Language: | English |
Keywords: | Multiscale systematic risk; CAPM; wavelets; multiscale variance |
Subjects: | G - Financial Economics > G1 - General Financial Markets G - Financial Economics > G0 - General |
Item ID: | 4288 |
Depositing User: | Atilla Cifter |
Date Deposited: | 31 Jul 2007 |
Last Modified: | 28 Sep 2019 04:45 |
References: | Albora, A.M., Ucan, O.N., Hisarlı, Z.M., Stümpel, H., “Sivas-Kuşaklı Uygarlığının Dalgacık Yöntemi Kullanılarak Arkeo-Jeofizik Araştırılması”, Uygulamalı Yerbilimleri Dergisi, Cilt 2, Sayı 1, 2002, ss.59-69 Almasri, A. and Shukur, G., “An Illustration of the Causality Relationship Between Government Spending and Revenue Using Wavelets Analysis on Finnish Data”, Journal of Applied Statistics, 30(5), 2003, ss.571-584 Ang, A., and J.Chen, “Asymmetric Correlations of Equity Portfolios”, Journal of Financial Economics, 63, 2002, ss. 443-494. Aytaç, U., Dalgacıklar Teorisi, Bitirme Projesi, ITU Mühendislik Fakültesi, Matematik Bölümü, 2004. Brailsford T.J. and Faff, R.W., Testing the conditional CAPM and the effect of intervaling: a note, Pacific-Basin Finance J. 5, 1997, ss.527–37, Brailsford, T.J. and Josev, T, The impact of return interval on the estimation of systematic risk Pacific-Basin Finance J. 5, 1997, ss.353–72 Cohen, K., Hawawini, G., Mayer, S., Schwartz R. and Whitcomb, D., The Microstructure of Securities Markets (Sydney: Prentice-Hall), 1986 Çetin,U., Kucur,O.; "Dalgacık Dönüşümü Metodu İle Deprem İşaretlerinde Faz Geliş Zamanlarının Tesbiti," 11. Sinyal İşleme Ve İletişim Uygulamaları (SİU) Kurultayı, İstanbul, 18-20 Haziran, 2003a. Çetin,U., Kucur,O.; "Dalgacık Dönüşümü Metodu İle Faz Geliş Zamanlarının Tesbiti," 5. Ulusal Deprem Mühendisliği Konferansı, İstanbul Teknik Üniversitesi, 26-30 Mayıs, 2003b Dalkir, M., “A new approach to causality in the frequency domain, Economics Bulletin”, Economics Bulletin, 3(44), 2004, ss. 1-14 Daubechies, I., “Ortonormal bases of compactly supported wavelets”, Communications on Pure and Applied Mathematics, 41, 1988, ss.909-996 Dickey, D.A. and Fuller, W.A., “Likelihood ratio statistics for an autoregressivetime series with a unit root”, Econometrica, 55, 1981, ss.251-276 Dirgenali F, and Kara S, “Yapay Sinir Ağları Ve Dalgacık Dönüşümü Kullanılarak Damar Sertliği Hastalığının Teşhisi”, Biyomedikal Mühendisliği Ulusal Toplantısı (BİYOMUT’05), 25-27 Mayıs, 2005. Fernandez, V.P., “The international CAPM and a wavelet-based decomposition of value at risk”, Studies in Nonlinear Dynamics and Econometrics, 9(4), 2005, ss. 83-119 Fernandez, V., “The CAPM and value at risk at different time-scales”, International Review of Financial Analysis, 15(3), 2006, ss.203-219 Frankfurter G., Leung, W. and Brockman, W., “Compounding period length and the market model”, J. Economics Business, 46, 1994, ss.179–93 Gallegati, M., "A Wavelet Analysis of MENA Stock Markets," Finance 0512027, Econwpa,2005a,Http://İdeas.Repec.Org/P/Wpa/Wuwpfi/0512027.Html,[Erişim:27.03.2006 ] Gallegati, M., “Stock Market Returns and Economic Activity: Evidence from Wavelet Analysis”, Mimeo, DEA and SIEC, Universit Politecnica dele Marche, 2005b Gallegati, M. and Gallegati, M., “Wavelet Variance and Correlation Analyses of Output in G7 Countries”, Mimeo, DEA, Universit Politecnica dele Marche, 2005 Gençay, R., Selcuk, F., Whitcher, B., An Introduction to Wavelets and Other Filtering Methods in Finance and Economics(Academic Pres), 2002 Gençay, R., Selcuk, F., Whitcher, B., “Systematic risk and timescales”, Quantitative Finance, 3 (2), 2003, ss.108-116 Gençay, R., Selcuk, F., Whitcher, B., “Multiscale systematic risk”, Journal of International Money and Finance, 24 (1), 2005, ss. 55-70 Hawawini, G., “Why beta shifts as the return interval changes”,J. Financial Analysts 39, 1983 Handa, P., Kothari, S.P. and Wasley, C., “The relation between the return interval and betas: implications for the size effect”, J. Financial Economics, 23, 1989, ss.79–100 Handa, P., Kothari, S.P. and Wasley, C., “Sensitivity of multivariate tests of the capital asset pricing to the return interval measurement”, J. Finance, 48, 1993, ss.15–43 In, F. and Kim, S. “The Hedge Ratio and the Empirical Relationship Between the Stock and Futures Markets: A New Approach Using Wavelets”, The Journal of Business, 79, 2006, ss.799-820 Kara, S., Dirgenali, F., and Okkesim, Ş., “Diyabetli Hastalarda Düzensiz Mide Ritimlerinin Dalgacık Dönüşümü Kullanılarak Teşhisi”, Biyomedikal Mühendisliği Ulusal Toplantısı (BİYOMUT’05), 25-27 Mayıs, 2005 Kim, S., and In, H.F., “The Relationship Between Financial Variables and Real Economic Activity: Evidence from Spectral and Wavelet Analyses”, Studies in Nonlinear Dynamic&Econometrics, 7( 4), 2003 Kim, S. and In, F., “The relationship between stock returns and inflation: new evidence from wavelet analysis”, Journal of Empirical Finance, 12(3), 2005a, ss.435-444 Kim, S., and In, F., “Multihorizon Sharpe ratio.” Journal of Portfolio Management 31, 2005b, ss.105-101 Kim, S. and In, F., “On the relationship between changes in stock prices and bond yields in the G7 countries: Wavelet analysis”, Journal of International Financial Markets, Institutions and Money, 17(2), 2007, ss.67-179 Kwiatkowski, D., Phillips, P. C. B. , Schmidt, P. and Shin, Y. “Testing the null hypothesis of stationarity against the alternative of a unit root”, Journal of Econometrics, 54, 1992, ss.159-178. Lee, H.S., “International transmission of stock market movements: a wavelet analysis”, Applied Economics Letters, 11(3/20), 2004, ss.197-201 Lin, S. and Stevenson, M., “Wavelet analysis of the cost-carry model”, Studies in Nonlinear Dynamic&Econometrics, 5( 1), 2003, ss.87-102 Lintner, J., “The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets”, Review of Economics and Statistics, 47, 1965, ss.13-37. Mallat, S., “A theory for multiresolution signal decomposition: The wavelet representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 1989, ss.674-693 Mossin, J., Equilibrium in a Equilibrium in a Capital Asset Market, Econometrica, 34, ss.68-83. Percival, D.B., “On estimation of the wavelet variance”, Biometrika, 82(3), 1995, ss.619-631 Percival, D.B. and Walden, A.T., Wavelet Methods for Time Series Analysis(Cambridge University Pres), 2000 Phillips, P.C.B. and Peron, P. “Testing for a Unit Root in Time Series Regression,” Biometrika, 75, 1988, ss.335–346. Ramsey, J.B. and Lampart, C., “Decomposition of Economic Relationships by Timescale Using Wavelets”, Macroeconomic Dynamics, 2(1), 1998, ss.49–71 Robinson, P. M., “Log-periodogram regression of time series with long-range dependence”, Annals of Statistics 23, 1995, ss.1048–1072. Roll, R., “A Critique of the Asset Pricing Theory’s Tests; Part I: On Past and Potential Testability of the Theory”, Journal of Financial Economics, 4, 1977, ss. 129-176. Sharpe, William F., “Capital asset prices: A theory of market equilibrium under conditions of risk”, Journal of Finance, 19 (3), 1964, ss.425-442. Selçuk, F., Dalgacıklar: Yeni Bir Analiz Yöntemi, Bilkent Dergisi, Mart, 2005 Okkesim, Ş., Kara, S., Uysal, T., and Yağcı,, A., “Pre-Ortodontik Trainer Aparesi Kullanılan Hastalarda Çene Kaslarının Elektromyogram ve Ayrık Dalgacık Dönüşümü İle Analizi”, Biyomedikal Mühendisliği Ulusal Toplantısı (BİYOMUT’06), İstanbul, 25-28,Mayıs, 2006 Ulusoy, I., Halıcı, U., Karakaş, S., Leblebicioğlu, K., and Atalay, V., İşitsel Uyarılar Sonucu Oluşan EEG Sinyallerinin Dalgacık Dönüşümü Kullanılarak Yapay Sinir Ağları İle Sınıflandırılması, 7.Sinyal İşleme Ve Uygulamaları Kurultayı (SİU'99), 1999, s.386-390. Özün, A. and Çifter, “Bankaların Hisse Senedi Getirilerinde Faiz Oranı Riski: Dalgacıklar Analizi ile Türk Bankacılık Sektörü Üzerine Bir Uygulama”, Bankacılar Dergisi, Sayı 59, 2006, ss.1-15 Treynor, Jack, “Towards a theory of market value of risky assets”, unpub. manuscript, 1961 Zhang, C., and Farley, A., “A Multiscaling Test of Causality Effects Among International Stock Markets”, Neural, Parellel and Scientific Computations, 12(1), 2004, ss.91-112 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/4288 |
Available Versions of this Item
-
Multiscale Systematic Risk: An Application on ISE-30. (deposited 03 Apr 2007)
- Multiscale Systematic Risk: An Application on ISE-30. (deposited 31 Jul 2007) [Currently Displayed]