Courgeau, Daniel (2012): Probability and social science : methodologial relationships between the two approaches ? Published in: (2012)
Preview |
PDF
MPRA_paper_43102.pdf Download (211kB) | Preview |
Abstract
This work examines in depth the methodological relationships that probability and statistics have maintained with the social sciences. It covers both the history of thought and current methods. First, it examines in detail the history of the different paradigms and axioms for probability, from their emergence in the seventeenth century up to the most recent developments of the three major concepts: objective, subjective and logicist probability. It shows the statistical inference they permit, different applications to social sciences and the main problems they encounter. In the other side, from social sciences—particularly population sciences— to probability, it shows the different uses they made of probabilistic concepts during their history, from the seventeenth century, according to their paradigms: cross-sectional, longitudinal, event-history, hierarchical, contextual and multilevel approaches. While the ties may have seemed loose at times, they have more often been very close: some advances in probability were driven by the search for answers to questions raised by the social sciences; conversely, the latter have made progress thanks to advances in probability. This dual approach sheds new light on the historical development of the social sciences, probability and statistics, and on the enduring relevance of their links. It permits also to solve a number of methodological problems encountered all along their history.
Item Type: | MPRA Paper |
---|---|
Original Title: | Probability and social science : methodologial relationships between the two approaches ? |
Language: | English |
Keywords: | Probability; Population sciences; Philosophy of science; Social science; |
Subjects: | B - History of Economic Thought, Methodology, and Heterodox Approaches > B0 - General C - Mathematical and Quantitative Methods > C0 - General B - History of Economic Thought, Methodology, and Heterodox Approaches > B3 - History of Economic Thought: Individuals > B30 - General |
Item ID: | 43102 |
Depositing User: | Daniel Courgeau |
Date Deposited: | 06 Dec 2012 13:48 |
Last Modified: | 26 Sep 2019 09:25 |
References: | Aalen, O.O. (1975). Statistical inference for a family of counting processes. PhD thesis, Berkeley: University of California. Aalen, O.O. (1978). Nonparametric inference for a family of counting processes. The Annals of Statis-tics, 6 (4), pp. 701-726. Aalen, O.O., Borgan Ø, Keiding, N., Thorman, J. (1980). Interaction between life history events. Non-parametric analysis for prospective and retrospective data in the presence of censoring. Scandinavian Journal of Statistics, 7, pp. 161-171. Aalen, O.O, Andersen, P.K., Borgan, Ø, Gill, R.D., Keiding, N. (2009). History of applications of mar-tingales in survival analysis. Journal Electronique d’Histoire des Probabilités et de la Sta-tistique, 5 (1), pp. 1-28. Aalen, O.O., Borgan, Ø., Gjessing, H.K. (2008). Survival and event history analysis. New York: Springer. Aalen, O.O., Tretli, S. (1999). Analysing incidence of testis cancer by means of a frailty model. Cancer causes and control, 10, pp. 285-2992. Abel, N.H. (1826). Untersuchung der Functionen zweier unabhängig veränderlichen Gröszen x und y, wie f(x, y), welche die Eigenschaft haben, dasz f[z, f(x,y)] eine symmetrische Function von z, x und y ist. Journal Reine u. angew. Math. (Crelle's Journal), 1, pp. 11–15. Aczèl, J., Forte, B., Ng, C.T. (1974). Why the Shannon and Hartley entropies are ‘natural’. Advanced Applied Probabilities, 6, pp. 131–146. Agazzi, E. (1985). Commensurability, incommensurability and cumulativity in scientific knowledge. Erkenntnis, 22 (1-3), pp. 51-77. Agliardi, E. (2004). Axiomatization and economic theories: some remarks. Revue Economique, 55 (1), pp. 123-129. Alembert, d’, J.l.R. (1761a). Réflexions sur le calcul des Probabilités. In Opuscules Mathématiques, Tome II, Dixième Mémoire, Paris : David, pp. 1-25. Alembert, d’, J.l.R. (1761b). Sur l’application du calcul des probabilités à l’inoculation de la petite vé-role. In Opuscules Mathématiques, Tome II, Onzième mémoire, Paris : David, pp. 26-46. Alembert, d’, J.l.R. (1768a).Extrait de plusieurs lettres de l’auteur sur différents sujets, écrites dans le courant de l’année 1767. In Opuscules Mathématiques, Tome IV, Vingt-troisième mémoire, Paris : David, pp. 61-105. Alembert, d’, J.l.R. (1768b). Extraits de lettres sur le calcul des probabilités et sur les calculs relatifs à l’inoculation. In Opuscules Mathématiques, Tome IV, Vingt-septième mémoire, Paris : Da-vid, pp. 283-341. Alkoff, L. (1996). Real knowing: new versions of coherence theory. New York : Cornell University Press. Allais, M. (1953). Le comportement de l’homme rationnel devant le risque : critique des postulats et axiomes de l’école américaine. Econometrica, 21 (4), pp. 503-546. Andersen, P.K., Borgan, Ø., Gill, R.D., Keiding, N. (1993). Statistical models based on counting proc-esses. New York / Berlin / Heidelberg: Springer-Verlag. Andersen, P.K., Gill, R.D. (1982). Cox’s regression model for counting processes: A large sample study. Annals of Statistics, 10, pp. 1100-1120. Arbuthnott, J. (1710). An argument for divine providence, taken from the constant regularity observ’d in the birth of both sexes. Philosophical Transactions of the Royal Society of London, 27, pp. 186-190. Aristotle (around 330 B.C.). Nichomachean ethics. The Internet Classic Archive: translated by Ross, W.D. http://classics.mit.edu/Aristotle/nicomachaen.html.. Accessed 30 August 2011. Aristotle (around 330 B.C.). Physics. The Internet Classic Archive: translated by Hardie, R.P., Gaye, R.K. http://classics.mit.edu/Aristotle/physics.html. Accessed 30 August 2011. Aristotle (around 330 B.BC). Politics. The Internet Classic Archive: translated by Jowett B. http://classics.mit.edu/Aristotle/politics.html. Accessed 30 August 2011. Aristotle. (around 330 B.C.). Rhetoric. The Internet Classic Archive: translated by Roberts W.R. http://classics.mit.edu/Aristotle/rethoric.html . Accessed 30 August 2011. Aristotle. (around 330 B.C.). Topics. The Internet Classic Archive: translated by Pickard-Cambridge, W.A. http://classics.mit.edu/Aristotle/topics.html. Accessed 30 August 2011. Armatte, M. (2004). L’axiomatisation et les théories économiques: un commentaire. Revue Economi-que, 55 (1), pp. 130-142. Armatte, M. (2005). Lucien March (1859-1933). Une statistique mathématique sans probabilité? Journ@l Electronique d’Histoire des Probabilités et de la Statistique, 1 (1), pp.1-19. Arnauld, A., Nicole, P. (1662). La logique ou l’Art de penser. Paris: Chez Charles Savreux. Arnborg, S. (2006). Robust Bayesianism: relation to evidence theory. Journal of Advances in Informa-tion Fusion, 1 (1), pp. 75-90. Arnborg, S., Sjödin, G. (2000). Bayes rules in finite models. In Proceedings of the European Conference on Artificial Intelligence, Berlin, pp. 571-575. Arnborg, S., Sjödin, G. (2001). On the foundations of Bayesianism. In Bayesian Inference and Maxi-mum Entropy Methods in Science and Engineering, 20th International Workshop, Gif-sur-Yvette, American Institute of Physics, pp. 61-71. Ayton, P. (1997). How to be incoherent and seductive: bookmaker’s odds and support theory. Organ-izational Behavior and Human Decision Processes, 72, pp. 99-115. Bacon, F. (1605). The two books of Francis Bacon, of the proficience and advancement of learning, divine and humane. London: Henrie Tomes. Bacon, F. (1620). Novum Organum, London: J. Bill. Bacon, F. (1623). Historia vitae et mortis, Londini: In Officio Io. Haviland, impensis Matthei Lownes. Barbin, E., Marec, Y. (1987). Les recherches sur la probabilité des jugements de Simon-Denis Poisson. Histoire & Mesure, 11 (2), pp. 39-58. Barbin, E., Lamarche, J.P. eds (2004). Histoires de probabilités et de statistiques. Paris : Ellipses. Barbut, M. (1968). Les treillis des partitions d'un ensemble fini et leur représentation géométrique. Ma-thématiques et Sciences Humaines, 22,.pp. 5-22. Barbut, M. (2002). Une définition fonctionnelle de la dispersion en statistique et en calcul des probabi-lités : les fonctions de concentration de Paul Lévy. Mathématiques et Sciences Humaines, 40 (158), pp. 31-57. Barbut, M., Monjardet, B. (1970). Ordre et classification. Algèbre et combinatoire. Tomes 1, 2. Paris : Librairie Hachette. Bartholomew, D.J. (1975). Probability and social science. International Social Science Journal, XXVII (3), pp.421-136. Bateman, B.W. (1987). Keynes changing conception of probability. Economics and Philosophy, 3 (1), pp. 97-120. Bayes, T. R. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370-418. Bechtel, W., Richardson, R.C. (1993). Discovering complexity. Princeton: Princeton University Press. Bellhouse, D.R. (2011). A new look at Halley’s life table. Journal of the Royal Statistical Society: Se-ries A (Statistics in Society), 174 (3), pp. 823-832. The Royal Statistical Society Data Set Website: http://www.blackwellpublishing.com/rss/Readmefiles/A174p3bellhouse.htm. Ac-cessed 1 August 2011. Bentham, J. (1823). Traité des preuves judiciaires. Paris : Etienne Dumont. Benzécri, J.P. et collaborateurs (1973). L’analyse des données. 2 vol. Paris: Dunod. Berger, J.O., Bernardo, J.M., Sun, D. (2009). The formal definition of reference priors. The Annals of Statistics, 37 (2), pp. 905-938. Berlinski, D. (1976). On systems analysis: an essay concerning the limitations of some mathematical methods in the social, political and biological sciences. Cambridge, MA: MIT Press. Bernardo, J.M. (2011). Integrated objective Bayesian estimation and hypothesis testing (with discus-sion). In Bayesian statistics 9, Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M., West, M. eds, Oxford: Oxford University Press, pp. 1-68. Bernardo, J.M., Smith, A.F.M. (1994). Bayesian theory. Chichester : Wiley. Bernoulli, D. (1738). Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae, vol. V, pp. 175-192. Bernoulli, D. (1760). Essai d’une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l’inoculation pour la prévenir. Mémoires de l’Académie Royale des Sciences de l’Année 1760, pp. 1-45. Bernoulli, D. (1777). The most probable choice between several discrepant observations and the for-mation therefrom of the most likely induction. Acta Academia Petropolitanae, pp. 3-33. (English translation by Kendall M.G., Studies on the history of probability and statistics. XI. Daniel Bernoulli on maximum likelihood, Biometrika, 48 (1), pp. 1-18). Bernoulli, J.I., Leibniz, G.W. (1692-1704). Lettres échangées. (French translation by Meusnier N. (2006). Quelques échanges ? Journ@l électronique d’Histoire des Probabilités et de la Sta-tistique, 2 (1), pp. 1-12). Bernoulli, J.I. (1713). Ars conjectandi. Bâle: Impensis Thurnisiorum fratrum. Bernoulli, N. (1709). Dissertatio inauguralis mathematico-juridica, de usu artis conjectandi in jure. Bâle. Bernstein, F. (1917). Опыт аксиоматического обоснования теории вероятностей, Communication de la Société Mathématique de Karkov, 15, pp. 209-274. Bertalanffy, L. (1968). General system theory. Foundations, development, applications. New York: John Braziler. Berthelot, J.-M. ed (2001). Épistémologie des sciences sociales. Paris : Presses Universitaires de France. Bertrand, J. (1889). Calcul des probabilités. Paris : Gauthier-Villard et Fils. Bhattacharya, S.K., Singh, N.K., Tiwari, R.C. (1992). Hierarchical Bayesian survival analysis based on generalized exponential model. Metron, 50 (3), pp; 161-183. Bienaymé, J. (1838). Mémoire sur la probabilité des résultats moyens des observations; démonstration directe de la règle de Laplace. Mémoires Présentés à l’Académie Royale des Sciences de l’Institut de France, 5, pp. 513-558. Bienaymé, J. (1855). Sur un principe que M. Poisson avait cru découvrir et qu’il avait appelé loi des grands nombres. Séances et travaux de l’Académie des sciences morales et politiques, 31, pp. 379-389. Bienvenu, L., Shafer, G., Shen A. (2009). On the history of martingales in the study of randomness. Journal électronique d’Histoire des Probabilités et de la Statistique, 5 (1), pp. 1-40. Bijak, J. (2011). Forecasting international migration. Springer Series on Demographic Methods and Population Analysis, 24, Dordrecht / Heidelberg / London / New York: Springer. Billari, F., Prskawetz, A., ed. (2003). Agent-based computational demography. Using simulation to improve our understanding of demographic behaviour. Heidelberg, New York: Physica-Verlag. Birkhoff, G. (1935). Abstract-linear dependence and lattices. American Journal of Mathematics, 57 (4), pp. 800-804. Blayo, C. (1995). La condition d’homogénéité en analyse démographique et en analyse statistique des biographies. Population, 50 (6), pp. 1501-1518. Block, I. (1996). Incertitude, imprécision et additivité en fusion des données : point de vue historique. Traitement du signal, 13 (2), pp. 267-288. Blossfeld, H.-P., Hamerle A., Mayer, K.U. (1986). Ereingnisanalyse. Frankfurt/New York: Campus Verlag. Bocquet-Appel, J.-P. (2005).La paléodémographie. In Objets et méthodes en paléoanthropologie, Du-tour, O., Hublin, J.J., Vandermeersch, B eds, Paris: Comité des travaux historiques et scien-tifiques, pp. 271-313. Bocquet-Appel, J.-P., Bacro, J.-N. (2008). Estimation of age distribution with its confidence intervals using an iterative Bayesian procedure and a bootstrap sampling approach. In Recent ad-vances in paleodemography: Data, Techniques, Patterns, Bocquet-Appel J.-P. ed,. Dordrecht: Springer Verlag, pp. 63-82. Bocquet-Appel, J.-P., Masset, C. (1982). Farewell to Paleodemography. Journal of Human Evolution, 11, p. 321-333. Bocquet-Appel, J.-P., Masset, C. (1996). Paleodemography: Expectancy and False Hope. American Journal of Physical Anthropology, 99, pp. 571-583. Boisguilbert, P., (1695). Le Détail de la France, ou Traité de la cause de la cause de la diminution des biens, et des moyens d’y remédier. Rouen. Boltzmann, L. (1871). Einige allgemeine Sätze über wärmegleichgewicht. Sitzungberichte, K. Akade-mie der Wissenshaften, Wien, Mathematisch-Naturwissenchaftlichte Klasse, 63, pp. 679-711. Bod, R., Hay, J., Jannedy, S. eds (2003). Probabilistic linguistic. Cambridge, MA: MIT Press. Bonneuil, N. (2004). Analyse critique de Pattern and repertoire in history, by Roehner B. and Syme, T. History and Theory, 43, pp. 117-123. Bonvalet, C., Bry, X., Lelièvre, E. (1997). Analyse biographique des groupes. Les avancées d’une re-cherche en cours. Population, 52 (4), pp. 803-830. (English translation (1998). Event history analysis of groups. The findings of an on going research project, Population, 10 (1), pp. 11-38). Boole, G. (1854). An investigation of the laws of thought: on which are founded the mathematical theories of logic and probability. London: Walton and Maberly. Bordas-Desmoulins, J.-B. (1843). Le cartésianisme ou la véritable rénovation des sciences. Paris : J. Hetzel. Borel, E. (1898). Leçons sur la théorie des fonctions. Paris: Gauthier-Villars et fils. Borel, E. (1909). Eléments de la théorie des probabilités. Paris : Librairie Hermann. Borel, E. (1914). Le hasard. Paris : Librairie Félix Alcan. Borsboom, D., Mellenberg, G.J., van Herden, J. (2003). The theoretical status of latent variables. Psy-chological Review, 110 (2), pp. 203-219. Bourgeois-Pichat, J. (1994). La dynamique des populations. Populations stables, semi-stables, quasi-stables. Travaux et Documents, Cahier n° 133, Paris : INED / PUF. Braithwaite, R.B. (1941). Book review of Jeffreys’ Theory of probability. Mind, pp. 198-201. Bremaud, P. (1973). A martingale approach to point processes. Memorandum ERL-M345, Electronic research laboratory, Berkeley: University of California. Bretagnolle, J., Huber-Carol, C. (1988). Effects of omitting covariates in Cox’s model for survival data. Scandinavian Journal of Statistics, 15, pp. 125-138. Brian, E. (2001). Nouvel essai pour connaître la population du royaume. Histoire des sciences, calcul des probabilités et population de la France vers 1780. Annales de Démographie Historique, 102 (2), pp. 173-222. Brian, E. (2006). Les phénomènes sociaux que saisissait Jakob Bernoulli, aperçus de Condorcet à Au-guste Comte. Journal Electronique d’Histoire des Probabilités et de la Statistique, 2 (1b), pp. 1-15. Brian, E., Jaisson, M. (2007). The descent of human sex ratio at birth. Methodos Series 4, Dordrecht: Springer Breslow, N. (1990). Biostatistics and Bayes (with comments). Statistical Science, 5 (3), pp. 269-298. Broggi, U. (1907). Die Axiome der Wahrscheinlichkeitsrechnung. PhD Thesis, Universität Götingen. Browne, W.J. (1998). Applying MCMC methods to multi-level models. PhD Thesis, University of Bath, citeseerx.ist.edu: http://www.ams.ucsc.edu/~draper/browne-PhD-dissert. Accessed 10 July, 2011. Buck, C.E., Cavanagh, W.G., Litton, W.G. (1996). Bayesian approach to interpreting archaeological data. Chichester: John Wiley & Sons. Burch, T. (2002). Computer modelling of theory: explanation for the 21st century. In The explanatory power of models. Bridging the gap between empirical and theoretical models in the social sciences, Franck, R. ed, Methodos Series 1, Boston : Dordrecht / London: Kluwer Aca-demic Publishers, pp. 245-266. Burch, T. (2003).Data, models and theory: the structure of demographic knowledge. In Agent-based computational demography. Using simulation to improve our understanding of demo-graphic behaviour, Billari, F.C., Prskawetz, A. eds., Heidelberg, New York: Physica-Verlag, pp. 19-40. Cantelli, F.P. (1905). Sui fondamenti del calcolo delle probabilità. Il Pitagora. Giornale di matematica per gli alunni delle scuole secondarie, 12, pp. 21-25. Cantelli, F.P. (1932). Una teoria astratta del calcolo delle probabilità, Giornale dell’Istituto Italiano degli Attuari, 8, pp. 257-265. Cantelli, F.P. (1935). Considérations sur la convergence dans le calcul des probabilités; Annales de l’I.H.P., 5 (1), pp. 3-50. Cantillon, R. (1755). Essai sur la nature du commerce en général. London : Fletcher Gyles. Cantor, G. (1873). Notes historiques sur le calcul des probabilités, In Comptes-rendus de la session de l’association de recherche scientifique, Halle, pp. 34-42. Cantor, G. (1874). Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, Journal de Crelle 77, pp. 258-262. Cardano, J. (1663). Liber De Ludo Aleae. In Opera Omnia,Tomus I, Lugduni. Carnap, R. (1928). Der logische Aufbau der Welt. Leipzig: Felix Meiner Verlag. (English translation 1967. The logical structure of the world. Pseudo problems in philosophy. University of California Press). Carnap, R. (1933). L’ancienne et la nouvelle logique. Paris: Hermann. Carnap, R. (1950). The logical foundations of probability. Chicago: University of Chicago Press. Carnap, R. (1952). The continuum of inductive methods. Chicago: University of Chicago Press. Carnot, S. (1824). Réflexions sur la puissance motrice du feu et les machines propres à développer cette puissance. Paris: Bachelier. Carpenter, J., Goldstein, H., Rasbash, J. (1999). A non-parametric bootstrap for multilevel models. Multilevel Modelling Newsletter, 11 (1), pp. 2-5. Cartwright, N. (2006). Counterfactuals in economics: a commentary. In Explanation and causation: topics in contemporary philosophy, O’Rourke, M., Campbell, J.K., Silverstein, H. eds, Cambridge: MIT Press, pp. 191-221. Cartwright, N. (2007). Hunting causes and using them: approaches in philosophy and economics. Cambridge: Cambridge University Press. Cartwright, N. (2009). Causality, invariance and policy. In The Oxford handbook of philosophy of eco-nomics, Kincaid, H., Ross, D. eds., New York: Oxford University Press, pp. 410-421. Casini, L., Illari, P.M., Russo, F. Williamson, J. (2011). Models for prediction, explanation and con-trol: recursive Bayesian networks. Theoria, pp. 5-33. Caticha, A. (2004). Relative entropy and inductive inference. In Bayesian Inference and Maximum En-tropy Methods in Science and Engineering, Erickson G., Zhai, Y. eds, AIP, vol. 107, pp. 75-96. Caussinus, H., Courgeau, D. (2010). Estimating age without measuring it: A new method in paleodemography. Population-E, 65 (1), pp. 117-144 (Estimer l’âge sans le mesurer en paléodémo-graphie. Population, 65 (1), pp. 117-145). Caussinus, H., Courgeau, D. (2011). Une nouvelle méthode d’estimation de la structure par âge des dé-cès des adultes. In Manuel de paléodémographie, Séguy, I., Buchet, L. eds, Paris : Ined, pp. 291-325. Charbit, Y. (2010). The classical foundations of population thought from Plato to Marx. Heidelberg/ London: Springer. Chikuni, S. (1975). Biological study on the population of the Pacific Ocean perch in the North Pacific. Bulletin of the Far Seas Fisheries Research Laboratory, 12, pp. 1-19. Choquet, G. (1953). Theory of capacities. Annales de l’Institut Fourier, 5, pp. 131-296. Chung, K.-L. (1942). On mutually favourable events. The Annals of Statistics, 13, pp. 338-349. Church, A. (1932). An unsolvable problem of elementary number theory. American Journal of Mathe-matics, 58 (2), pp. 345-363. Church, A. (1940). On the concept of a random sequence. Bulletin of the American Mathematical Soci-ety, 46 (2), pp. 130-135. Clausius, R. (1865). Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik und Chemie, CXXV, pp. 353-400. Clayton, D. (1991). A Monte-Carlo method for Bayesian inference in frailty models. Biometrics, 47, pp. 467-485. Cohen, M. R., Nagel E. (1934). An introduction to logic and scientific method. New-York: Harcourt Brace. Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., Kyllonen, P. (2004). Working memory is ‘al-most) perfectly predicted by g. Intelligence, 32, pp. 277-296. Colyvan, M. (2004). The philosophical significance of Cox’s theorem. International Journal of Ap-proximate Reasoning, 37 (1), pp. 71-85. Colyvan, M. (2008). Is probability the only coherent approach to uncertainty? Risk Analysis, 28 (3), pp. 645-652. Comte, A (1830-1842). Cours de philosophie positive. Paris: Bachelier. Condorcet (1778). Sur les probabilités. Histoire de l’Académie Royale de Sciences, 1781, pp. 43-46. Condorcet (1785). Essai sur l’application de l’analyse à la probabilité des décisions rendues à la plu-ralité des voix. Paris : Imprimerie Nationale. Condorcet (1786). Mémoire sur le calcul des probabilités. Cinquième partie. Sur la probabilité des faits extraordinaires. Mémoire pour l’Académie Royale des Sciences pour 1783, pp. 553-559 (In Arithmétique politique. Textes rares ou inédits (1767-1789), Paris : Institut National d’Etudes Démographiques, pp. 431-436). Condorcet (2004). Tableau historique des progrès de l’esprit humain. Projets, esquisse, fragments et notes (1772-1794). Schandeler J.-P et Crépel P. eds. Paris : Institut National d’Etudes Démographiques. Congdon, P. (2001). Bayesian statistical modeling. Chichester: John Wiley & Sons, Ltd. Copeland, A. (1928). Admissible numbers in the theory of probability. American Journal of Mathematics, 50, pp. 535-552. Copeland, A. (1936). Point set theory applied to the random selection of the digits of an admissible number, American Journal of Mathematics, 58, pp. 181-192. Copernic, N. (1543). De revolutionibus orbium coelestum, Nuremberg: Johanes Petreius ed. Coumet, E. (1970). La théorie du hasard est-elle née par hasard ? Annales : Economies, Sociétés, Civi-lisations, 25 (3), pp. 574-598. Coumet, E. (2003). Auguste Comte, le calcul des chances. Aberration radicale de l’esprit mathématique. Mathématiques et Sciences Humaines, 41 (162), pp. 9-17. Council of the Statistical Society of London (1838). Introduction. Journal of the Statistical society of London, 1 (1), pp. 1-5. Courgeau, D. (1982). Proposed analysis of the French Migration, family and occupation history sur-vey. Multistate Life-History Analysis Task Force Meeting, Laxenburg: IIASA, pp. 1-14. Courgeau, D. (1985). Interaction between spatial mobility, family and career life-cycle: A French survey. European Sociological Review, 1 (2), pp.139-162. Courgeau, D. (1991). Analyse de données biographiques erronées. Population, 46 (1), pp. 89-104. Courgeau, D. (1992). Impact of response error on event history analysis. Population: An English Selection, 4, pp. 97-110. Courgeau, D. (2002). Evolution ou révolutions dans la pensée démographique? Mathématiques et Sciences Humaines, 40 (160), pp. 49-76. Courgeau, D. (Ed.) (2003). Methodology and epistemology of multilevel analysis. Approaches from dif-ferent social sciences. Methodos Series, vol. 2, Dordrecht / Boston / London: Kluwer Academic Publishers. Courgeau, D. (2004a). Du groupe à l’individu. Synthèse multiniveau. Paris : Ined. Courgeau, D. (2004b). Probabilités, démographie et sciences sociales. Mathématiques et Sciences Hu-maines, 42 (3), pp. 5-19. Courgeau, D. (2007a). Multilevel synthesis. From the group to the individual. Dordrecht : Springer. Courgeau, D. (2007b). Inférence statistique, échangeabilité et approche multiniveau. Mathématiques et Sciences Humaines, 45 (179), pp. 5-19. Courgeau, D. (2009). Paradigmes démographiques et cumulativité. In La cumulativité du savoir en sciences sociales, Walliser, B., ed., Lassay-les-Châteaux : Éditions de l’École des Hautes Études en Sciences Sociales, pp 243-276. Courgeau, D. (2010). Dispersion of measurements in demography: a historical view. Electronic Journ@l for History of probability and Statistics, 6 (1), pp.1-19. (French version: La disper-sion des mesures démographiques: vue historique. Journ@l Electronique d’Histoire des Probabilités et de la Statistique, 6 (1), pp. 1-20). Courgeau, D. (2011). Critiques des méthodes actuellement utilisés. In Manuel de paléodémographie, Séguy, I., Buchet, L. eds, Paris : Ined, pp. 255-290. Courgeau, D., Franck, R. (2007). Demography, a fully formed science or a science in the making, Population-E, 62 (1), pp. 39-45. (La démographie, science constituée ou en voie de consti-tution? Esquisse d’un programme. Population, 62 (1), pp. 39-46.) Courgeau, D., Lelièvre, E. (1986). Nuptialité et agriculture. Population, 41 (2), pp. 303-326. Courgeau, D., Lelièvre, E. (1989). Analyse démographique des biographies. Paris: Ined (English trans-lation: (1992). Event history analysis in demography. Oxford: Clarendon Press. Spanish translation: (2001). Análisis demográfico de las biografías, México: El Colegio de México). Courgeau, D., Lelièvre, E. (1996). Changement de paradigme en démographie. Population, 51 (2), pp. 645-654. (English translation: (1997) Changing paradigm in demography. Population. An English Selection, 9, pp 1-10). Courgeau, D., Pumain, D. (1993). Spatial population issues. 6. France. In Coping with sustained low fertility in France and the Netherlands, van Nimwegen, N., Chesnais, J.-C., Dykstra, P., eds, Amsterdam: Swetz & Zeitlinger Publishers, pp. 127-160. Cournot, A.-A. (1843). Exposition de la théorie des chances et des probabilités. Paris: Hachette. Cox, D.R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, 34 (2), pp. 187-220. Cox, D.R. (1975). Partial likelihood. Biometrika, 62, pp. 269-276. Cox, D.R. (2006). Principles of statistical inference. Cambridge: Cambridge University Press. Cox, D.R., Hinkley, D.V. (1974). Theoretical statistics. London: Chapman and Hall. Cox, D.R., Oakes, D. (1984). Analysis of survival data. London / New York: Chapman and Hall. Cox, D.R., Wermuth, N. (1993). Linear dependences represented by chain graphs. Statistical Science, 8 (3), pp. 204-218. Cox, R. (1946). Probability, frequency, and reasonable expectation. American Journal of Physics, 14, 1-13. Cox, R. (1961). The algebra of probable inference. Baltimore: The John Hopkins Press. Cox, R. (1979). On inference and inquiry. In The Maximum Entropy Formalism, Levine R. D., Tribus M. eds, Cambridge: MIT Press, pp. 119–167. Craver, C.F. (2007). Explaining the brain: mechanisms and the mosaic unity of neurosciences. Oxford: Clarendon Press. Cribari-Neto, F. and Zarkos S. G. (1999). Yet another econometric programming environment. Journal of Applied Econometrics, 14, pp. 319-329. Darden, L. (2002). Strategies for discovering mechanisms: schema instantiation, modular subassembly, forward/backward chaining. Philosophy of Science (Supplement), 69, S354-S365. Darden, L. ed. (2006). Reasoning in biological discoveries. Cambridge: Cambridge University Press. Daston, L. (1988). Classical probabilities in the enlightenment. Princeton: Princeton University. Daston, L. (1989). L’interprétation classique du calcul des probabilités. Annales : Economies, Sociétés, Civilisations, 44 (3), pp ; 715-731. David, F.N. (1955). Studies in the history of probability and statistics. I. Dicing and gaming (A note on the history of probability). Biometrika, 42 (1-2), pp. 1-15. Davis, J. (2003). The relationship between Keynes‘s early and later philosophical thinking. In The Philosophy of Keynes’s Economics: Probability, Uncertainty, and Convention, Runde, J., Mizuhara, S., Eds, London and New York: Routledge, pp. 100-110. Dawid, A.P. (2000). Causal inference without counterfactuals. Journal of the American Statistical Association, 95 (450), pp. 407-448. Dawid, A.P. (2007). Counterfactuals, hypothetical and potential responses: a philosophical examina-tion of statistical causality. In Causality and probability in the sciences, Russo, F., William-son, J., Texts in Philosophy Series Vol. 5, London: College Publications, pp. 503-532. Dawid, A.P., Mortera, J. (1996). Coherent analysis of forensic identification evidence. Journal of the Royal Statistical Society, 58 (2), pp. 425-453. Degenne, A., Forsé, M. (1994). Les réseaux sociaux. Une approche structurale en sociologie. Paris: Armand Colin. Degenne, A., Forsé, M. (1999). Introducing social networks. London: Sage publications. DeGroot, M.H. (1970). Optimal statistical decision. New York: McGraw-Hill. Delannoy, M. (1895). Sur une question de probabilités traitée par d’Alembert. Bulletin de la S.M.F., Tome 23, pp. 262-265. Delaporte P. (1941). Evolution de la mortalité en Europe depuis les origines des statistiques de l’état civil. Paris : Imprimerie Nationale. Dellacherie, C. (1978). Nombres au hasard de Borel à Martin Löf, Gazette des Mathématiques du Qué-bec, 11, 1978. (Version remaniée de l’Institut de Mathématiques, Université Louis-Pasteur de Strasbourg, (1978), 30 p.). Demming, W.E. (1940). On a least squares adjustment of a sample frequency table when the expected marginal totals are known. The Annals of Mathematical Statistics, 11, pp. 427-444. Dempster, A.P. (1967). Upper and lower probabilities induced by a multilevel mapping, Annals of Mathematical Statistics, 38, pp. 325-339. Dempster, A.P. (1968). A generalization of Bayesian inference. Journal of the Royal Statistical Society, Ser. B, 30, pp. 205-245. Deparcieux, A. (1746). Essai sur les probabilités de la durée de la vie humaine. Paris : Frères Guerin. Descartes, R. (1647). Méditations, objections et réponses, In Œuvres et lettres, Paris : Gallimard. Desrosières, A. (1993). La politique des grands nombres : histoire de la raison statistique. Paris : La Découverte. Destutt de Tracy, A.L.C. (1801). Elémens d’idéologie, vol 4. Paris : Pierre Firmin Didot, An IX, (Seconde édition, (1804-1818)). Donnant, D.F. (1805). Théorie élémentaire de la statistique. Paris : Imprimerie de Valade. Doob, J.L. (1940). Regularity properties of certain families of chance variables. Transactions of the American Mathematical Society, 44 (1), pp. 455-486. Doob, J.L. (1949).Application of the theory of martingales. In Actes du Colloque International: le Calcul des Probabilités et ses Applications, Paris: CNRS, pp. 23-27. Doob, J.L. (1953). Stochastic processes. New York: Wiley. Dormoy, E. (1874). Théorie mathématique des assurances sur la vie. Journal des Actuaires Français, 3, pp. 283-299, 432-461. Draper, D. (1995). Inference and hierarchical modelling in the social sciences (with discussion). Journal of Educational and Behavioural Statistics, 20, pp. 115-147, 233-239. Draper, D. (2008). Bayesian multilevel analysis and MCMC. In Handbook of multilevel models, de Leeuw, J., Meyer, E. eds., New York: Springer-Verlag, pp. 77-140. Draper, D., Hodges, J. S., Mallows, C. L. & Pregibon, D. (1993). Exchangeability and data analysis. Journal of the Royal Statistical Society A, 156, 9-37. Dubois, D., Prade, H. (1988). An introduction to possibilistic and fuzzy logics. In Non standard logics for automated reasoning, Smets P., Mandani, A., Dubois, D., Prade, H. (eds), New York: Academic Press, pp. 287-326. Duncan, W. J., Collar, A.R. (1934). A method for the solution of oscillations problems by matrices, Philosophical Magazine, 17 (Series 7), pp. 865. Dupâquier, J. (1996). L’invention de la table de mortalité. Paris : Presses Universitaires de France. Durkheim, E. (1895). Les règles de la méthode sociologique. Paris : Alcan. Durkheim, E. (1897). Le suicide. Paris: Alcan. Dussause, H., Pasquier, M. (1905). Les Œuvres Économiques de Sir William Petty, 2 vols. Paris: Giard & Brière. (French translation of The Economic Writings of Sir William Petty, edited by Hull, C.H., 2 vol., Cambridge: At the University Press, 1899). Edgeworth, F.Y. (1883). The method of least squares. Philosophical Magazine, 5th Series, 16, pp. 360-375. Edgeworth, F.Y. (1855a). Observation and statistics. An essay on the theory of errors of observation and the first principles of statistics. Transactions of the Cambridge Philosophical Society, 14, pp. 138-169. Edgeworth, F.Y. (1885b). On methods of ascertaining variations in the rate of births, deaths and mar-riage. Journal of the Royal Statistical Society of London, 48, pp. 628-649. Edgeworth, F.Y. (1892). Correlated averages. Philosophical magazine, 5th series, 34, pp. 190-204. Edgeworth, F.Y. (1893a). Note on the correlation between organs. Philosophical magazine, 5th series, 36, pp. 350-351. Edgeworth, F.Y. (1893b). Statistical correlations between social phenomena. Journal of the Royal Sta-tistical Society, 56, pp. 852-853. Edgeworth, F.Y. (1895). On some recent contributions to the theory of statistics. Journal of the Royal Statistical Society, 58, pp. 506-515. Efron, B. (1978). Controversies in the foundation of statistics. American Mathematical Monthly, 85, pp. 231-246. Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 332 (10), pp. 891–921. Ellis, R.L. (1849). On the Foundations of the theory of probability. Transactions of the Cambridge Philosophical Society, vol. VIII, pp. 1-16. Ellsberg, D. (1961). Risk, ambiguity and the Savage axioms. The Quarterly Journal of Economics, 75 (4), pp. 643-669. Ellsberg, D. (2001). Risk, ambiguity and decision. New York & London: Garland Publishing Inc. Eriksson, L., Hájek, A. (2007). What are degrees of belief? Studia Logica, 86, pp. 185-215. Euler, L. (1760). Recherches générales sur la mortalité et la multiplication du genre humain. Histoire de l’Académie Royale des Sciences et des Belles Lettres de Berlin, vol. 16, pp. 144-164. Feller, W. (1934). Review of Kolmogorov (1933). Zentralblatt für Mathematik und ihre Grenzegebiete, 7, p. 216. Feller, (1950). An introduction to the theory of probability and its applications, vol. 1, New York: John Wiley & Sons. Feller, (1961). An introduction to the theory of probability and its applications, vol. 2, New York: John Wiley & Sons. Fergusson, T.S. (1973). A bayesian analysis of some parametric problems. Annals of Statistics, 1, pp. 209-230. Fermat de, P. (1679). Varia opera mathemetica Petri de Fermat, Senatoris Tolosianis. Toulouse: Joannen Pech. Fienberg, S.F. (2006). When did Bayesian inference become “Bayesian”. Bayesian Analysis, 1 (1), pp. 1-40. Finetti de, B. (1931a). Sul significato soggettivo della probabilità. Fundamenta Mathematicae, 17, pp. 298-329. Finetti de, B. (1931b). Sul concetto di media. Giornale dell’Instituto Italiano degli Attuari, 2, pp. 367-396. Finetti de, B. (1937). La prévision : ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré, 7, Paris, pp. 1-68. Finetti de, B. (1951). Recent suggestions for the reconciliation of theories of probability. In Proceed-ings of the second Berkeley symposium on mathematical statistics and probability, Neyman, J. ed., Berkeley: University of California Press, pp. 217-225. Finetti de, B. (1952). Sulla preferibilità. Giornale degli Economisti e Annali de Economia, 11, pp. 685-709. Finetti de, B. (1964). Foresight: its logical laws, its subjective sources. In Studies in subjective probability, Kyburg, H. E. and Smokler, H. E. (eds), New York: John Wiley & Sons, pp. 95-158. Finetti de, B. (1974). Theory of probability, 2 vols. London - New York: John Wiley & Sons. Finetti de, B. (1985). Cambridge probability theorists. Manchester School, 53, pp. 348-363. Fishburn, P.C. (1964). Decision and value theory. New York: John Wiley & Sons. Fishburn, P.C. (1975). A theory of subjective probability and expected utilities. Theory and Decision, 6, pp. 287-310. Fishburn, P.C. (1986). The axioms of subjective probability, Statistical Science, 1 (3), pp. 335-345. Fisher, R.A. (1922a). The mathematical theory of probability. London: Macmillan. Fisher, R.A. (1922b). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society (A), 222, pp. 309-368. Fisher, R.A. (1923). Statistical tests of agreement between observation and hypothesis, Economica, 3, pp. 139-147. Fisher, R.A. (1925a). Theory of Statistical estimation. Proceedings of the Cambridge Philosophical Society, 22, pp. 700-725. Fisher, R.A. (1925b). Statistical Methods for Research Workers. Edinburgh: Olivier and Boyd. Fisher, R.A. (1933). The concepts of inverse probability and fiducial probability referring to unknown parameters. Proceedings of the Royal Society, A, 139, pp. 343-348. Fisher, R.A. (1934). Probability likelihood and quantity of information in the logic of uncertain inference. Proceedings of the Royal Society, A, 140, pp. 1-8. Fisher, R.A. (1935). The logic of inductive inference. Journal of the Royal Statistical Society, 98, pp. 39-82. Fisher, R. A. (1956). Statistical methods and scientific inference. Edinburgh: Oliver and Boyd. Fisher, R.A. (1958). The nature of probability. Centennial Review, 2, pp. 261-274. Fisher, R.A. (1960). Scientific thought and the refinement of human reasoning. Journal of the Operations Research Society of Japan, 3, pp. 1-10. Florens, J.-P. (2002). Modèles de durée. In Méthodes bayésiennes en statistique, Droesbeke, J.-J., Fine, J., Saporta, G., eds, Paris : Editions Technip, pp. 315-330. Florens, J.P., Mouchart, M., Rolin, J.-M. (1999). Semi and non-parametric Bayesian analysis of dura-tion models. International Statistical Review, 67 (2), pp. 187-210. Fraassen Van, B. (1980). The scientific image. Oxford: Clarendon Press. Franck, R., Ed. (1994). Faut-il chercher aux causes une raison? L’explication causale dans les sciences humaines. Paris : Librairie Philosophique Vrin. Franck, R. (1995). Mosaïques, machines, organismes et sociétés. Examen métadisciplinaire du réductionnisme. Revue Philosophique de Louvain, 93, pp. 67-81. Franck, R., Ed. (2002). The explanatory power of models. Bridging the gap between empirical and theoretical research in the social sciences. Boston / Dordrecht / London: Kluwer Academic Publishers. Franck, R. (2007). Peut-on accroître le pouvoir explicatif des modèles en économie ? In Leçons de philosophie économique, T. III, Leroux A., Livet P. (dir.), Paris : Economica, pp. 303-354. Franck, R. (2009). Allier l’investigation empirique et la recherché théorique: une priorité. In La cumu-lativité du savoir en sciences sociales, Walliser, B., ed., Lassay-les-Châteaux : Éditions de l’École des Hautes Études en Sciences Sociales, pp. 57-84. Franklin, J. (2001). Resurrecting logical probability. Erkenntnis, 55, pp. 277-305. Fréchet, M. (1915). Sur l’intégrale d’une fonctionnelle étendue à un ensemble abstrait. Bulletin de la S.M.F., tome 43, pp. 248-265. Fréchet, M. (1937). Généralités sur le calcul des probabilités. Variables aléatoires. Paris : Gauthier Villars. Fréchet, M. (1938). Exposé et discussion de quelques recherches récentes sur les fondements du calcul des probabilités, In Les fondements du calcul des probabilités, vol II, Wavre R. ed. Paris : Hermann, pp. 23-55. Fréchet, M. (1951). Rapport général sur les travaux du calcul des probabilités. In Congrès International de Philosophie des Sciences, Paris, 1949 ; IV : Calcul des probabilités, Bayer R. ed, Pa-ris : Hermann, pp. 3-21. Freund, J.E. (1965). Puzzle or Paradox? American Statistician, 19 (4), 29-44. Fridriksson, A. (1934). On the calculation of age distribution within a stock of cods by means of relatively few age-determinations as a key to measurements on a large scale. Rapports et Pro-cès-verbaux des Réunions du Conseil Permanent International pour l’Exploration des Mers, 86, pp. 1-14. Friedman, M., Savage, L.J. (1948). The utility analysis of choices involving risk. The Journal of Politi-cal Economy, LVI, 4, pp. 279-304. Frischhoff, B., Slovic, B., Lichteinstein, S. (1978). Fault trees: sensitivity of estimated failure prob-abilities to problem representation. Journal of Experimental Psychology: Human Perception and Performance, 4, pp. 330-344. Gacôgne, L. (1993). About a foundation of the Dempster's rule, Rapport 93/27 Laforia. Gail, M., Wieand, S. Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experi-ments with nonlinear regressions and omitted covariates. Biometrika, 71, pp: 431–444. Galileo, G. (1613). Istoria e dimostrazioni intorno alle macchie solari e loro accidenti. Roma: Giacomo Mascardi. Galileo, G. (1898). Sopra le scoperte de i dadi. In Opere, Vol. VIII. Firenze: Barbera Editore, pp. 591-594. Galton, F. (1875). Statistics by intercomparison, with remarks on the law of frequency of error. Philosophical Magazine, 4th series, 49, pp. 33-46. Galton, F. (1886a). Family likeness in stature. Proceedings of the Royal Society of London, 40, pp. 42-72 (Appendix by Hamilton Dickson J.D., pp. 63-72). Galton, F. (1886b). Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute, 15, pp. 246-263. Galton, F. (1888). Co-relations and their measurement, chiefly from anthropometric data. Proceedings of the Royal Society of London, 45, pp. 135-145. Gärdenfors, P., Hansson, B., Sahlin, N.-E. eds (1983). Evidential value: philosophical, judicial and psychological aspects of a theory. Lund: Gleerups. Gardin, J.-C. (2002). The logicist analysis of explanatory theories in archæology. In The explanatory power of models. Bridging the gap between empirical sciences and theoretical research in the social sciences, Franck, R. ed,, Boston/ Dordrecht/ London: Kluwer Academic Publish-ers, pp. 267-284. Garnett, J.C.M. (1919). On certain independent factors in mental measurements. Proceedings of the Royal Society London, Series A, 96, pp. 91-111. Gauss, C.F. (1809).Theoria motus corporum celestium. Hamburg: Perthes et Besser. Gauss, C.F. (1816). Bestimmung der Genauigkeit der boebechtungen. Zeitshrifte für Astronomie und Verwandte Wissenschaften, 1, pp. 185-216. Gauss, C.F. (1823). Theoria combinationis observationum erroribus minimis obnoxiae. Göttingen: Dieterich. Gavrilova, N.S., Gavrilov, L.A. (2001). Mortality measurement and modeling beyond age 100. Living to 100 Symposium, Orlando, Florida. Website: http://www.soa.org/library/monographs/life/living-to-100/2011/mono-li11-5b-gavrilova.pdf .Accessed 20 September 2011. Gelfand, A.E., Solomon, H. (1973). A study of Poisson’s model for jury verdicts in criminal and civil trials. Journal of the American Statistical Association, 68 (342), pp. 271-278. Gelman, A., Karlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. New York: Chapman and Hall. Gergonne, J.-D. (1818-1819). Examen critique de quelques dispositions de notre code d’instruction criminelle. Annales de Mathématiques Pures et Appliquées (Annales de Gergonne), 9, pp. 306-319. Gerrard, B. (2003). Keynesian uncertainty: what do we know? In The Philosophy of Keynes’s Economics: Probability, Uncertainty, and Convention, Runde, J., Mizuhara, S., eds, London and New York: Routledge, pp. 239-251. Ghosal, S. (1996). A review of consistency and convergence rates of posterior distributions. In Pro-ceedings of Varanashi Symposium in Bayesian Inference, India: Banaras Hindu University, pp. 1-10. Gibbs, J.W. (1902). Elementary principles in statistical mechanics. New Haven, Connecticut: Yale University Press. Gignac, G.E. (2007). Working memory and fluid intelligence are both identical to g?! Reanalyses and critical evaluation. Psychology science, 49 (3), pp. 187-207. Gignac G.E. (2008). Higher-order models versus direct hierarchical models: g as superordinate or breadth factor? Psychology Science Quarterly, 50 (1), pp. 21-43. Gill, J. (2008).Bayesian methods. A social and behavioral sciences approach. Boca Raton, FL: Chapman & Hall. Gillies, D. (2000). Philosophical theories of probability. London and New York: Routledge. Gillies, D. (2003). Probability and uncertainty in Keynes’s economics. In The Philosophy of Keynes’s Economics: Probability, Uncertainty, and Convention, Runde, J., Mizuhara, S., eds, London and New York: Routledge, pp. 111-129. Gimblett, R. ed. (2002). Integrating geographic information systems and agent-based modelling tech-niques for simulating social and ecological processes. New York: Oxford University Press. Gingerenzer, G., Swijtink, Z., Daston, L.J., Beatty, L., Krüger, L. eds (1989). The empire of chance: How probability changed science and everyday life. Cambridge: Cambridge University Press. Glennan, S. (2002). Rethinking mechanical explanations. Philosophy of Science, 69 (Proceedings), S342-353. Glennan, S. (2005). Modeling mechanisms. Studies in History and Philosophy of Science Part C: Stud-ies in History and Philosophy of Biological and Biomedical Sciences, 36 (2), pp. 375-388. Gödel, K. (1931): Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik, 38, p. 173-198. Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least-squares. Biometrika, 73, pp. 43-56. Goldstein, H. (1987). Multilevel covariance component models. Biometrika, 74, pp. 430-431. Goldstein, H. (1991). Nonlinear multilevel models, wit an application to discrete response data. Bio-metrika, 78, pp. 45-51. Goldstein, H. (2003). Multilevel statistical models. London: Edward Arnold. Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality. Philoso-phical Transactions, 115, p. 513. Gonseth, F. (1975). Le référentiel, univers obligé de médiatisation. Lausanne: Editions l’Age d’Homme. Good, I.J. (1952). Rational decisions. Journal of the Royal Statistical Society B, 14, pp. 107-114. Good, I.J. (1956). Which comes first, probability or statistics? Journal of the Institute of Actuaries, 42, pp. 249-255. Good, I.J. (1962). Subjective probability as the measure of a non-measurable set. In Logic, methodol-ogy and philosophy of science, Nagel, E., Suppes P., Tarski A. eds, Stanford: Stanford Uni-versity Press, pp. 319-329. Good, I.J. (1971). 46656 varieties of Bayesians. American Statistician, 25, pp. 62-63. Good, I.J. (1980). Some history of the hierarchical Bayesian methodology. In Bayesian Statistics, Bernardo, J.M. et al eds, Valencia: University of Valencia Press, pp. 489-519. Good, I.J. (1983). Good thinking. Minneapolis: University of Minnesota Press. Gould, S.J. (1981). The mismeasure of man. New York: W.W. Norton & Co. Gouraud, C. (1848). Histoire du calcul des probabilités depuis ses origines jusqu’à nos jours. Paris : Auguste Durand. Graetzer, J. (1883). Edmund Halley und Caspar Neumann: Ein Beitrag zur Geschichte der Bevölke-rungsstatistik. Breslau: Schottlaender. Granger, G.-G. (1967). Épistémologie économique. In Logique et connaissance scientifique. Piaget, J. ed, Paris: Editions Gallimard, pp. 1019-1055. Granger, G.-G. (1976). La théorie aristotélicienne de la science. Paris : Éditions Aubier Montaigne. Granger, G.-G. (1988). Essai d’une philosophie du style. Paris : Editions Odile Jacob. Granger, G.-G. (1992). A quoi sert l’épistémologie? Droit et Société, 20/21, pp. 35-42. Granger, G.-G. (1994). Formes, opérations, objets. Paris : Librairie Philosophique Vrin. Graunt, J. (1662). Natural and political observations mentioned in a following index, and made upon the bills of mortality. London. (French translation by Vilquin E., Observations Naturelles et Politiques répertoriées dans l’index ci-après et faites sur les bulletins de mortalité. (1977). Paris: Ined.) Greenland, S. (1998a). Probability logic and probabilistic induction. Epidemiology, 9, pp. 322-332. Greenland, S. (1998b). Induction versus Popper: substance versus semantics. International Journal of Epidemiology, 27, 543-548. Greenland, S. (2000). Principles of multilevel modelling. International Journal of Epidemiology, 29, pp. 158-167. Greenland, S., Poole, C. (1988). Invariants and noninvariants in the concept of interdependent effects. Scandinavian Journal of Work, Environment, and Health, 14, pp. 125-129. Grether, D.M., Plott, C.R. (1979). Economic theory of choice and the preference reversal phenomenon. The American Economic Review, 69 (4), pp. 623-638. Guillard, A. (1855). Eléments de statistique humaine ou démographie comparée. Paris: Guillaumin. Gurr, T.R. (1993). Minorities at risk: A global view of ethnopolitical conflicts. Washington, D.C.: United States Institute of Peace Progress. Gustafson, P. (1998). Flexible Bayesian modelling for survival data. Lifetime Data Analysis, 4, pp. 281-299. Gustafson, P., Aeschliman, D., Levy, A.R. (2003). A simple approach for fitting Bayesian survival models. Lifetime data analysis, 9, pp. 5-19. Gustafsson, J.-E. (1984). A unifying model of the structure of intellectual abilities. Intelligence, 8, pp. 179-203. Haavelmo, T. (1943). The statistical implications of a system of simultaneous equations. Economet-rica, 11, pp. 1-12. Hacking, I. (1965). Logic of statistical inference. Cambridge: Cambridge University Press. Hacking, I. (1975). The emergence of probability. Cambridge: Cambridge University Press. Hacking, I. (1990). The taming of science. Cambridge: Cambridge University Press. Hacking, I. (2001). An introduction to probability and inductive logic. Cambridge: Cambridge University Press. Hadamard, J. (1922). Les principes du calcul des probabilités. Revue de Métaphysique et de Morale, 29 (3), pp. 289-293. Hájek, A. (2008a). Dutch Book arguments. In The Oxford Handbook of Corporate Social Responsibility, Anand, P., Pattanaik, P., Puppe C., Phil papers: http://philrsss.anu.edu.au/people-defaults/alanh/papers/DBA.pdf. Accessed 10 July 2011. Hájek, A. (2008b). Probability. In Current Issues in the Philosophy of Mathematics: from the Perspective of Mathematicians, Gold, B. ed, Mathematical Association of America, Phil papers: , http://philrsss.anu.edu.au/people-defaults/alanh/papers/overview.pdf. Accessed 10 July 2011. Hald, A. (1990). A history of probability and statistics and their applications before 1750. New York: Wiley. Hald, A. (1998). A history of mathematical statistics from 1750 to 1930.New York: Wiley. Hald, A. (2007). A history of parametric statistical inference from Bernoulli to Fisher, 1713-1935. New York: Springer. Halley, E. (1693). An estimate of the degrees of the Mortality of Mankind, drawn from curious Tables of the Births and Funeral’s at the City of Breslau; with an Attempt to ascertain the price of the Annuities upon Lives. Philosophical Transactions Giving some Accounts of the Present Undertaking, Studies and Labour of the Ingenious in many Considerable Parts of the World, vol. XVII, n° 196, pp. 596-610. Halpern, J.Y. (1999a). A counterexample of to theorems of Cox and Fine. Journal of Artificial Intelli-gence Research, 10, pp. 67-85. Halpern, J.Y. (1999b). Technical addendum, Cox’s theorem revisited. Journal of Artificial Intelligence Research, 11, pp. 429-435. Halpern, J.Y., Koller, D. (1995). Representation dependence in probabilistic inference. In Proceedings of the fourteenth international joint conference on artificial intelligence (IJCAI’95), pp. 1853-1860. Halpern, J.Y., Koller, D. (2004). Representation dependence in probabilistic inference. Journal of Arti-ficial Intelligence Research, 21, pp. 319-356. Hanson, T.E. (2006). Modeling censored lifetime data using a mixture of Gamma baseline. Bayesian Analysis, 1 (3), pp. 575-594. Hanson, T.E., Johnson, W.E. (2002). Modeling regression error with a mixture of Polya trees. Journal of the American Statistical Association, 97, pp. 1020-1033. Harr, A. (1933). Der massbegrieff in der Theorie der kontinuierlichen Gruppen. Annals of Mathemati-cal Statistics, 34, pp. 147-169. Hasofer, A.M. (1967). Studies in the history of probability and statistics. XVI. Random mechanisms in Talmudic literature. Biometrika, 54 (1/2), pp. 316-321. Hasselblad, V. (1966). Estimation of parameters for a mixture of normal distribution, Technometrics, 8 (3), pp. 431-444. Hecht, J. (1977). L’idée de dénombrement jusqu’à la révolution. In Pour une histoire de la statistique, Tome 1/ Contributions. Paris: INSEE, pp. 21-81. Heckman, J., Singer, B. (1982). Population heterogeneity in demographic models. In Multidimensional mathematical demography, Land, K., Rogers, A. eds, New York: Academic Press, pp. 567-599. Heckman, J., Singer, B. (1984a). Econometric duration analysis. Journal of Econometrics, 24, pp. 63-132. Heckman, J., Singer, B. (1984b). A method for minimizing distributional assumptions in econometric models for duration data. Econometrica, 52 (2), pp. 271—320. Heide, C.C., Seneta, E. (1972). Studies on the history of probability and statistics. XXXI. The simple branching process, a turning point test and a fundamental inequality: a historical note on I.J. Bienaymé. Biometrika, 59 (3), pp. 680-683. Hempel, C.G., Oppenheim, P. (1948). Studies in the logic explanation. Philosophy of Science, 15, pp. 567-579. Henry, L. (1957). Un exemple de surestimation de la mortalité par la méthode de Halley, Population, 12 (1), pp. 141-142. Henry, L. (1959). D’un problème fondamental de l’analyse démographique. Population, 14 (1), pp. 9-32. Henry, L. (1966). Analyse et mesure des phénomènes démographiques par cohorte. Population, 13 (1), pp. 465-482. Henry, L. (1972). Démographie. Analyse et modèles. Paris : Larousse. Henry, L. (1981). Dictionnaire démographique multilingue, UIESP, Liège : Ordina éditions (English translation : adapted by Van de Valle, E. (1982), Multilingual demographic dictionary, IUSSP, Liège : Ordina éditions). Henry, L., Blayo, Y. (1975). La population de la France de 1740 à 1860. Population, 30, pp. 71-122. Hespel, B. (1994). Revue sommaire des principales théories contemporaines de la causation. In Faut-il chercher aux causes une raison ? L’explication causale dans les sciences humaines, Franck R. ed, Paris : Librairie Philosophique J. Vrin, pp. 223-231. Hilbert, D. (1902). Mathematical problems. Bulletin of the American Mathematical Society, 8 (2), pp. 437-439. Hoem, J. (1983). Multistate mathematical demography should adopt the notions of event history analy-sis. Stockholm Research Reports in Demography, 10. Hofacker, J.D. (1829). Extrait d’une lettre du professeur Hofacker au rédacteur de la Gazette médico-chirurgicale d’Innsbruck. Annales d’hygiène publique et de médecine légale, 1 (01), pp. 557-558. Holland, P. (1986). Statistics and Causal inference (with Comments). Journal of the American Statisti-cal Association, 81, pp. 945-970. Hooper, G. (1699). A calculation of the credibility of human testimony. Anonymous translation in Phi-losophical Transactions of the Royal Society, vol. 21, pp. 359-365. Hooten, M.B., Anderson, J., Waller, L.A. (2010). Assessing North American influenza dynamics with a statistical SIRS model. Spatial and Spatio-temporal Epidemiology, 1, pp. 177-185. Hooten, M.B., Wilke, C.K. (2010). Statistical agent-based models for discrete spatio-temporal systems. Journal of the American Statistical Association, 105 (489), pp. 236-248. Horn, J.L., Catell, R.B. (1966). Refinement and test of the theory of fluid and crystallised general intel-ligence. Journal of Educational Psychology, 57, pp. 253-270. Horn Van, K.S. (2003). Constructing a logic of plausible inference: a guide to Cox’s theorem International Journal of Approximate Reasoning, 34 (1), pp. 3-24. Hoppa, R.D., Vaupel, J.W., eds, (2002). Paleodemography. Age distribution from skeletons samples. Cambridge: Cambridge University Press. Hulting, F.L., Harville, D.A. (1991). Some Bayesian and non Bayesian procedures for the analysis of comparative experiments and for small area estimation: Computational aspects, frequentist properties, and relationships. Journal of the American Statistical Association, 86, n° 415, pp. 557-568. Hume, D. (1739-1740). A treatise of human nature. London: John Noon. Hume, D. (1748). Philosophical essays concerning human understanding. London: A. Millar. Hunt, G.A. (1966). Martingales et processus de Markov. Paris: Dunod. Hunter, D. (1989). Causality and maximum entropy updating. International Journal of Approximate reasoning, 3, pp. 87-114. Hutchinson, D., Morrison, J., Felgate, R. (2003). Bootstrapping the effects of measurement errors. Multilevel Modeling Newsletter, 15 (2), pp. 2-10. Hutter, M. (2001). Towards a universal theory of artificial intelligence based on an algorithmic prob-ability and sequential decisions. In Proceedings of the 12th European Conference on Ma-chine Learning, De Raedt, L., Flash, P. eds, Lecture Notes on Artificial Intelligence Series, New York / Berlin / Heidelberg: Springer Verlag. Huygens, C. (1895). Correspondance 1666-1669. In Œuvres complètes, Tome Sixième, La Haye : Martinus Nijhoff. Huygens, C. (1657). De ratiociniis in ludo aleae. Leyde: Elzevier. Ibrahim, J.G., Chen, M.-H., Sinha, D. (2001). Bayesian survival analysis. New York / Berlin / Heidelberg: Springer-Verlag. Illari, P.M, Russo, F., Williamson, J. eds. (2011). Causality in the sciences. Oxford: Oxford University Press. Illari, P.M., Williamson, J. (2010). Function and organization: comparing the mechanisms of protein synthesis and natural selection. Studies in History and Philosophy of Biological and Bio-medical Sciences, 41, pp. 279-291. Imhoff Van, E., Post, W. (1997). Méthodes de micro-simulation pour des projections de population, Population (D. Courgeau ed), 52 (4), pp. 889-932 (1998). Microsimulation methods for population projections. Population. An English Selection (D. Courgeau ed), 10 (1), pp. 97-138). Inkelmann, F., Murrugarra, D., Jarrah, A.S., Laubenbacher, R. (2010). A mathematical framework for agent based models of complex biological networks. ArXiv: 1006.0408v5 [q-bio.QM], 23 p. Irwin, J.O. (1941). Book review of Jeffreys’ Theory of probability. Journal of the Royal Statistical So-ciety, 104, pp. 59-64. Jacob, F. (1970). La logique du vivant. Paris : Gallimard. Jacob, P. (1980). L’empirisme logique: ses antécédents, ses critiques. Paris: Editions de Minuit. Jaynes, E.T. (1956). Probability theory in science and engineering. Dallas, Texas: Socony-Mobil Oil Co. Jaynes, E.T. (1957). How does brain do plausible reasoning? Report 421, Microwave Laboratory, Stanford University (published 1988, in Maximum entropy and Bayesian methods in science and engineering, Vol. 1, Erickson, G.J., Smith, C.R. eds, Dordrecht: Kluwer Academic Pub-lishers, pp. 1-24). Jaynes, E.T. (1963). Information theory and statistical mechanics. In Statistical Physics, Ford, K. (ed.), New York: Benjamin, pp. 181-218. Jaynes, E.T. (1968). Prior probabilities. In IEEE Transactions on Systems Science and Cybernetics, SSC-4, pp. 227-241. Jaynes, E.T. (1976). Confidence intervals vs. Bayesian intervals. In Foundations of probability theory, statistical inference, and statistical theories of science, Vol. II, Harper, R.G. and Hooker, G. eds, Dordrecht-Holland: D. Reidel Publishing Company, pp. 175-257. Jaynes, E.T. (1979). Where do we stand on maximum entropy? In The maximum entropy formalism, R.D. Levine and M. Tribus eds, Cambridge, M.A.: MIT Press, pp. 15-118. Jaynes, E.T. (1980). Marginalization and prior probabilities. In Bayesian analysis in econometrics and statistics, Zellner, A. ed, Amsterdam: North Holland, pp. 43-87. Jaynes, E. T. (1988). How does the brain do plausible reasoning. In Maximum-Entropy and Bayesian Methods in Science and Engineering, 1, Erickson G. J. and Smith C. R. (eds.), Dordrecht: Kluwer, pp.1-24. Jaynes, E.T. (1990). Probability theory as logic. In Maximum entropy and Bayesian methods, Fougère, P.F. ed, Dordrecht: Kluwer Academic Publishers, pp. 1-16. Jaynes, E.T. (1991). How should we use entropy in economics? Unpublished works by Edwin Jaynes http://bayes.wustl.edu/etj/articles/entropy.in.economics.pdf. Accessed July 10 2011. Jaynes, E. T. (2003). Probability theory: the logic of science. Cambridge: Cambridge University Press. Jeffreys, H. (1931). Scientific inference. Cambridge: Cambridge University Press. Jeffreys, H. (1932). On the theory of errors and least squares. Proceedings of the Royal Society, A, 138, pp. 48-55. Jeffreys, H. (1933a). Probability, statistics, and the theory of errors. Proceedings of the Royal Society, A, 140, pp. 523-535. Jeffreys, H. (1933b). On the prior probability in the theory of sampling. Proceedings of the Cambridge Philosophical Society, 29, pp. 83-87. Jeffreys, H. (1934). Probability and scientific method. Proceedings of the Royal Society, A, 146, pp. 9-16. Jeffreys, H. (1937). On the relation between direct and inverse methods in statistics. Proceedings of the Royal Society, A, 160, pp. 325-348. Jeffreys, H. (1939). Theory of probability. New York: Clarendon Press. Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London, Ser. A, 186, pp. 453-461. Jeffreys, H. (1955). The present position in probability theory. British Journal for philosophy of Science, 5, 275-289. Jenninson, C., Turnbull B.W. (1990). Statistical approaches to interim monitoring of medical trials: a review and commentary. Statistical Science, 5 (3), pp. 299-317. Johnson W.E. (1932). Probability: the deductive and inductive problem, Mind, 41, pp. 409-423. Jones, K. (1993). ‘Everywhere is nowhere’: Multilevel perspectives on the importance of place. Ports-mouth: The University of Portsmouth Inaugural Lectures. Jöreskog, K.G., van Thillo, M. (1972). LISREL: A general computer program for estimating a linear structural equations system involving indicators of unmeasured variables. Princeton NJ: Educational Testing Service. Educational Resources Information Center (ERIC). . http://www.eric.ed.gov/ERICWebPortal/search/detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=ED073122&ERICExtSearch_SearchType_0=no&accno=ED073122. Accessed 19 August 2011. Kahneman, D., Tversky A. (1972). Subjective probability: a judgement of representativeness. Cogni-tive Psychology, 3, pp. 430-454. Kahneman, D., Tversky A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47 (2), pp. 263-291. Kalbfleisch, J.D. (1978). Non-parametric Bayesian analysis of survival time data. Journal of the Royal Statistical Society, B, pp. 214-221. Kalbfleisch, J.D., Prentice, R.L. (1980). The statistical analysis of failure time data. New York / Chichester / Brisbane / Toronto: John Wiley and Sons. Kamke, E. (1932). Über neure Begründungen der Wahrscheinlichkeitsrechnung, Jahresbericht der Deutschen Mathematiker-Vereinigung, 42, pp. 14-27. Kaplan, E.L., Meier, P. (1958). Non-parametric estimation from incomplete observations. Journal of the American Statistical Association, 53, pp. 457-481. Kaplan, M. (1996). Decision theory as philosophy. Cambridge: Cambridge University Press. Kardaun, O.J.W.F., Salomé, D., Schaafsma, W., Ste |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/43102 |