Kuzmin, Evgeny (2013): Logic of Interval Uncertainty. Published in: Modern Applied Science , Vol. 8, No. 5 (August 2014): pp. 152-162.
Preview |
PDF
MPRA_paper_58165.pdf Download (362kB) | Preview |
Abstract
The scientific category of uncertainty refers to that group of terms, an interpretation of which is not unambiguous and exact. In non-eliminability of the category soft content barrier there is an objective transition to the interval uncertainty. This research is an attempt to solve the issue of estimating the interval uncertainty based on methods of a logical analysis and a comparison. The approach presented by the paper is opposed to known methods of a mechanical selection of values following a given function. In the course of the research, there has been introduced a concept of the tenversion uncertainty for scientific use. Overall results obtained from the research allow calculating values of the interval uncertainty and assess their quality. The scientific competency of methods is achieved in theoretically tested solutions.
Item Type: | MPRA Paper |
---|---|
Original Title: | Logic of Interval Uncertainty |
English Title: | Logic of Interval Uncertainty |
Language: | English |
Keywords: | interval uncertainty, fuzziness in economics, tenversion uncertainty, information entropy, uncertainty errors. |
Subjects: | D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D81 - Criteria for Decision-Making under Risk and Uncertainty |
Item ID: | 58165 |
Depositing User: | Evgeny Kuzmin |
Date Deposited: | 06 Sep 2014 10:20 |
Last Modified: | 27 Sep 2019 17:47 |
References: | Afanasyev, V. G., (1975). Social Information and Social Management. [Sotsial'naia informatsiia i upravlenie obshchestvom]. Moscow, Russia: Politizdat. Ang, A. H.-S., Tang, W. H., (1975). Probabilistic Concepts in Engineering Planning and Design. New York: John Wiley. Avdiysky, V. I., Kuzmin, E. A., (2013). Criterion conditions to manifest stability in economics: indicative parameter of uncertainty. [Kriterial'nye usloviia proiavleniia ustoichivosti v ekonomike: indikativnyi parametr neopredelennosti]. Issues of Risk Analysis, 6 (10), 10-22. Retrieved from http://elibrary.ru/item.asp?id= 21338344 (Accessed on June 14, 2014). Belyaev, L. S., Makarov, A. A., (1974). Uncertainty Factor in Making Optimal Decisions in Large Energy Systems, Vol. 2. [Faktor neopredelennosti pri priniatii optimal'nykh reshenii v bol'shikh sistemakh energetiki]. Novosibirsk, Russia: Siberian Energy Institute. Ben-Nairn, J. and Prade, H., (2008). Evaluating Trustworthiness from Past Performances: Interval-Based Approaches. (pp: 33-46) In: Scalable Uncertainty Management: Lecture Notes in Computer Science. Volume 5291. Greco, S., Lukasiewicz, T., (Eds.), Springer. http://dx.doi.org/10.1007/978-3-540-87993-0_5. Borisov, A. N., Alekseev, A. V., Merkureva, G. V., et al., (1989). Processing Fuzzy Information in Decision Making Systems. [Obrabotka nechetkoi informatsii v sistemakh priniatiia reshenii]. Moscow, Russia: Radio and Communication. Chanas, S., Kamburowski, J. (1981). The use of fuzzy variables in PERT. Fuzzy Set Systems, 5: 1-19. http://dx.doi.org/10.1016/0165-0114(81)90029-4. Dubois, D., Prade, H., Smets, P. (1996). Representing partial ignorance. IEEE Transactions on Systems, Man and Cybernetics, 26, 361-377. http://dx.doi.org/10.1109/3468.487961. Elishako, I., Cai, G. Q., Starnes, J. H., Jr, (1994). Non-linear buckling of a column with initial imperfection via stochastic and non-stochastic convex model. International Journal of Non-Linear Mechanics, 29(1), 71-82. http://dx.doi.org/10.1016/0020-7462(94)90053-1. Elishakoff, I., Ohsaki, M., (2010). Optimization and Anti-optimization of Structures under Uncertainty. London, United Kingdom: World Scientific. Fagin, R. and Halpern, J. Y., (1991). A New Approach to Updating Beliefs, Uncertainty. In: Artificial Intelligence 6, Bonissone, et al. (Eds.), (pp: 347-374). Elsevier Science Publishers. Ferson, S., Ginzburg, L. (1996). Different methods are needed to propagate ignorance and variability. Reliability Engineering and Systems Safety, 54, 133–144. http://dx.doi.org/10.1016/S0951-8320(96)00071-3. Fortin, J., Zieliński, P., Dubois, D., Fargier, H., (2010). Criticality analysis of activity networks under interval uncertainty. Journal of Scheduling, 6 (13), 609-627. http://dx.doi.org/10.1007/s10951-010-0163-3. Guo, P. and Tanaka, H., (2007). Interval regression analysis and its application. Ipm30: Interval and Imprecise Data Analysis. Proceedings of the 56th Session, Bulletin of the International Statistical Institute, Lisboa, Portugal. Guo, P. and Tanaka, H., (2010). On Probabilities Interval. In: Integrated Uncertainty Management and Applications. Huynh, V.-N., Nakamori, Y., Lawry, J., Inuiguchi, M., (Eds.), Springer. http://dx.doi.org/10.1007/978-3-642-11960-6_15. Halpem, J. and Fagin, R., (1992). Two views of belief: belief as generalized probability and belief as evidence. Artificial Intelligence, 54, 275-317. Retrieved from http://researcher.watson.ibm.com/researcher/files/us-fagin/ai92.pdf (Accessed on June 14, 2014). Hapke, M., Jaszkiewicz, A., Słowiński, R. (1994). Fuzzy project scheduling system for software development. Fuzzy Sets and Systems, 67, 101-107. http://dx.doi.org/10.1016/0165-0114(94)90211-9. Kelley, J. E. (1961). Critical path planning and scheduling-mathematical basis. Operations Research, 9, 296-320. http://dx.doi.org/10.1287/opre.9.3.296. Kim, Y. V., Ovseyevich, A. I., Reshetnyak, Y. N., (1993). Comparison of stochastic and guaranteed approaches to the estimation of the state of dynamic systems. Journal of Computer and System Sciences International, 31 (6), 56-64. Retrieved from http://elibrary.ru/item.asp?id=12733744 (Accessed on June 14, 2014). Kreinovich, V., Wu, B., Xiang, G., (2012). Computing Statistics under Interval and Fuzzy Uncertainty: Applications to Computer Science and Engineering. Berlin, Germany: Springer. http://dx.doi.org/10.1007/978-3-642-24905-1. Kuzmin, E. A., (2012). Uncertainty and Certainty in Management of Organizational and Economic Systems. [Neopredelennost' i opredelennost' v upravlenii organizatsionno-ekonomicheskimi sistemami]. Ekaterinburg, Institute of Economics, Ural Branch of the RAS. Kyburg, H. E., Jr., (1989). Higher Order Probabilities. In: Uncertainty in Artificial Intelligence 3 (pp: 15-22), Kanai, L. N., Levitt, T. S., Lemmer, J. F., (Eds.), Elsevier Science Publishers, Amsterdam. Leshkevich, T., (1994). Uncertainty in World and World of Uncertainty: Philosophical Reflections on Order and Chaos. [Neopredelennost' v mire i mir neopredelennosti: filosofskie razmyshleniia o poriadke i khaose]. Rostov-on-Don, Russia: Rostov University Press. Levin, V. I., (2011). Simulating optimization tasks under interval uncertainty conditions. [Modelirovanie zadach optimizatsii v usloviiakh interval'noi neopredelennosti]. News of the V.G. Belinsky Penza State Pedagogical University, 26, 589-595. Retrieved from http://cyberleninka.ru/article/n/modelirovanie-zadach-optimizatsii-v-usloviyah-intervalnoy-neopredelennosti (Accessed on June 14, 2014). Levin, V. I., (2004). Interval logic and over fuzzy sets. Theory and application. [Interval'naia logika i sverkhnechetkie mnozhestva. Teoriia i primenenie]. Bulletin of the Tambov State Technical University, 4-1 (10), 924-929. Retrieved from http://www.vestnik.tstu.ru/ rus/t_10/pdf/10_4_004.pdf (Accessed on June 14, 2014). Li, H., Wong, W.K., Tang, Y., (2012). Global Synchronization Stability for Stochastic Complex Dynamical Networks with Probabilistic Interval Time-Varying Delays. Journal of Optimization Theory and Applications, 2 (152), 496-516. http://dx.doi.org/10.1007/s10957-011-9917-0. Li, H., Yue, D., (2010). Synchronization of Markovian jumping stochastic complex networks with distributed time delays and probabilistic interval discrete time-varying delays. Journal of Physics A: Mathematical and Theoretical, vol. 43, no. 10, article no. 105101. http://dx.doi.org/10.1088/1751-8113/43/10/105101. Lindley, D. V., (1987). The probability approach to the treatment of uncertainty in artificial intelligence and expert systems. Statistical Science, 2, 17-24. http://dx.doi.org/10.1214/ss/1177013427. Loostma, F. A. (1997). Fuzzy logic for planning and decision-making. Dordrecht: Kluwer Academic. Loui, R., (1986). Interval-based decisions for reasoning systems. In: Uncertainty in Artiicial Intelligence (pp: 459-472), L.N. Kanal and J.E Lemmer, editors. Elsevier Science Publishers, Amsterdam, Netherlands. http://dx.doi.org/10.1016/B978-0-444-70058-2.50039-5. McCahon, C. S., Lee, E. S. (1988). Project network analysis with fuzzy activity times. Computers and Mathematics with Applications, 15, 829-838. http://dx.doi.org/10.1016/0898-1221(88)90120-4. Neapolitan, R. E., (1996). Is higher-order uncertainly needed? IEEE Transactions on Systems, Man and Cybernetics, 26, 294-302. http://dx.doi.org/10.1109/3468.487955. Nguyen, H. T., Kosheleva O., Kreinovich, V., Person, S., (2008). Trade-off between Sample Size and Accuracy: Case of Dynamic Measurements under interval uncertainty. In: Interval / Probabilistic Uncertainty and Non-classical Logics, Huynh, V.-N., Nakamori, Y., Ono, H. et al., (Eds.), Springer. http://dx.doi.org/10.1007/978-3-540-77664-2_5. Panyukov, A. V. and Latipova, A. T., (2008). Evaluation of Equilibrium in von Neumann’s Model with Interval Uncertainty of Source Data. [Otsenka ravnovesiia v modeli Neimana pri interval'noi neopredelennosti iskhodnykh dannykh]. Equilibrium Models in Economics and Energetics. Proceedings of the All-Russian Conference and Section of Mathematical Economics at the 14th Baikal International School-Workshop. Irkutsk, Russia: Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences. Parsons, S., (2001). Qualitative Methods for Reasoning under Uncertainty. United States: MIT Press. Parygin, B. D., (1978). Technological Revolution and Personality. [Nauchno-tekhnicheskaia revoliutsiia i lichnost']. Moscow, Russia: Politizdat. Prade, H. (1979). Using fuzzy sets theory in a scheduling problem: a case study. Fuzzy Sets and Systems, 2, 153-165. http://dx.doi.org/10.1016/0165-0114(79)90022-8. Rommelfanger, H. (1994). Network analysis and information flow in fuzzy environment. Fuzzy Sets and Systems, 67, 119-128. http://dx.doi.org/10.1016/0165-0114(94)90212-7. Shang, Y., (2011). Robustness of scale-free networks under attack with tunable grey information, EPL (Europhysics Letters), vol. 95, no. 2, article no. 28005. http://dx.doi.org/10.1209/0295-5075/95/28005. Shary, S. P., (2007). Interval analysis or Monte Carlo methods? [Interval'nyi analiz ili metody Monte-Karlo?]. Computational Technologies, 1(12), 103-115. Shary, S. P., (2012). Finite Measured Interval Analysis. [Konechnomernyi interval'nyi analiz]. Novosibirsk, Russia: Institute of Computational technologies of SB RAS; XYZ Press. Shen, B., Wang, Z., Ding, D., Shu, H., (2013). H∞ state estimation for complex networks with uncertain inner coupling and incomplete measurements. IEEE Trans Neural Netw Learn Syst. 24 (12), 2027-2037. http://dx.doi.org/10.1109/TNNLS.2013.2271357. Spall, J. C., (2002). Uncertainty Bounds in Parameter Estimation with Limited Data. In: Modeling Uncertainty: an Examination of Stochastic Theory, Methods, and Applications (pp: 685-710), Dror, M., L'Ecuyer, P., Szidarovszky, F. (Eds.), Springer. http://dx.doi.org/10.1007/0-306-48102-2_27. Sternin, M. and Shepelyov, G., (2012). Evaluating interval alternatives: uncertainties and preferences. [Otsenka interval'nykh al'ternativ: neopredelennosti i predpochteniia]. Information Models and Analyses, 1, 357-369. Retrieved from http://www.foibg.com/ijima/vol01/ijima01-4.pdf (Accessed on June 14, 2014). Xiang, G., (2007). Fast Algorithms for Computing Statistics under Interval Uncertainty, with Applications to Computer Science and to Electrical and Computer Engineering. United States: The University of Texas at El Paso. Computer Science; ProQuest. Yager, R. R. and Kreinovich, V., (1999). Decision making under interval probabilities. International Journal of Approximate Reasoning Qualitative, 22, 195-215. http://dx.doi.org/10.1016/S0888-613X(99) 00028-6. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/58165 |